
Árpád Gellért Lucian N. Vinţan Adrian Florea

A Systematic Approach to
Predict Unbiased

Branches

“Lucian Blaga” University Press
Sibiu 2007

Tiparul executat la:
Compartimentul de Multiplicare al

Editurii Universităţii „Lucian Blaga“ din Sibiu,
B-dul Victoriei nr. 10, Sibiu 550024

Tel.: 0269 210 122
E-mail: editura@ulbsibiu.ro
claudiu.fulea@ulbsibiu.ro

Descrierea CIP a Bibliotecii Naţionale a României

GELLÉRT, ÁRPÁD
 A systematic approach to predict unbiased branches /
Gellért Árpád, Vinţan N. Lucian, Florea Adrian. - Sibiu : Editura
Universităţii “Lucian Blaga” din Sibiu, 2007
 Bibliogr.
 Index
 ISBN 978-973-739-516-0

I. Vinţan, Lucian N.
II. Florea, Adrian

004

Acknowledgments

 This work was supported by the Romanian Agency for Academic
Research (CNCSIS) through our research grants TD-248/2007-2008
respectively 39/2007-2008. It was also partially carried out under the HPC-
EUROPA project (RII3-CT-2003-506079), with the support of the
European Community – Research Infrastructure Action under the FP6
"Structuring the European Research Area" Programme.

We express our gratitude to Professor Theo UNGERER, PhD, from
the University of Augsburg, Germany, for the useful discussions and for all
his various support. Also our gratitude to Dr. Colin EGAN from the
University of Hertfordshire, UK, for his research collaboration for over 10
years. Our full recognition to our MSc students Ciprian RADU, Horia
CALBOREAN and Adrian CRAPCIU, from “Lucian Blaga” University of
Sibiu, who were actively involved in implementing the simulator presented
in Chapter 6, to our colleague Marius OANCEA, who has also contributed
in the unbiased branch research, his results being presented in paragraph
3.2.1, respectively to Mihai MUNTENAŞ, MSc, who brought contributions
in paragraphs 3.2.2 and 4.6.1.

The authors

 Contents

1. Introduction into Unbiased Branches Challenge__________________7

2. Related Work __9

3. Finding Difficult-to-Predict Branches _________________________24
3.1. Methodology of Identifying Unbiased Branches___________________24
3.2. Experimental Results ___27

3.2.1. Pattern-based Correlation___ 28
3.2.2. Path-based Correlation ___ 39
3.2.3. An Analytical Model __ 45
3.2.4. An Example Regarding Branch Prediction Contexts Influence ____________ 49

4. Predicting Unbiased Branches _______________________________54
4.1. The Perceptron-Based Branch Predictor ________________________54
4.2. The Idealized Piecewise Linear Branch Predictor _________________55
4.3. The Frankenpredictor __57
4.4. The O-GEHL Predictor_______________________________________57
4.5. Value-History-Based Branch Prediction with Markov Models ______58

4.5.1. Local Branch Difference Predictor__________________________________ 60
4.5.2. Combined Global and Local Branch Difference Predictor _______________ 61
4.5.3. Branch Difference Prediction by Combining Multiple Partial Matches______ 62

4.6. Experimental Results ___64
4.6.1. Evaluating Neural-Based Branch Predictors __________________________ 64
4.6.2. Evaluating the O-GEHL Predictor __________________________________ 69
4.6.3. Evaluating Local Branch Difference Predictors________________________ 69
4.6.4. Evaluating Combined Global and Local Branch Difference Predictors______ 75
4.6.5. Branch Difference Prediction by Combining Multiple Partial Matches______ 78

5. Using Last Branch Difference as Prediction Information__________81

6. Designing an Advanced Simulator for Unbiased Branches Prediction88

6 A Systematic Approach to Predict Unbiased Branches

6.1. Simulation Methodology ______________________________________89
6.2. The Functional Kernel of the Simulator _________________________90
6.3. The Software Design of the ABPS Simulator _____________________91

7. Conclusions and Further Work_______________________________98

References __101

Glossary __108

1. Introduction into Unbiased Branches
Challenge

Two trends – technological and architectural (conceptual) – are
further increasing the importance of branch prediction. From technological
point of view, modern high-end processors use an array of tables for branch
direction and target prediction [Sez02]. These tables are quite large in size
(352K bits for the direction predictor in Alpha EV8) and they are accessed
every cycle resulting in significant energy consumption – sometimes more
than 10% of the total chip power [Cha03].

From an architectural point of view, processors are getting wider and
pipelines are getting deeper, allowing more aggressive clock rates in order
to improve overall performance. A very high frequency will determine a
very short clock cycle and the prediction cannot be delivered in a single
clock cycle or maximum two cycles which is the prediction latency in the
actual commercial processors (see Alpha 21264 branch predictor) [Jim02].
Also a very wide superscalar processor can suffer from performance point
of view in the misprediction case when the CPU context must be recovered
and the correct paths have to be (re)issued. As an example, the performance
of the Pentium 4 equivalent processor degrades by 0.45% per additional
misprediction cycle, and therefore the overall performance is very sensitive
to branch prediction. Taking into account that the average number of
instructions executed per cycle (IPC) grows non-linearly with the prediction
accuracy [Yeh92], it is very important to further increase the accuracy
achieved by present-day branch predictors.
 The quality of a prediction model is highly dependent on the quality
of the available data. Especially the choice of the features to base the
prediction on is important. The vast majority of branch prediction
approaches rely on usage of a greater number of input features (such as
branch address, global or local branch history, etc.) without taking into
account the real cause (unbiased branches) that produce a lower accuracy
and implicit lower performance.

In this work we prove that a branch in a certain dynamic context is
difficult predictable if it is unbiased and the outcomes are shuffled. In other
words, a dynamic branch instruction is unpredictable with a given prediction
information if it is unbiased in the considered dynamic context and the

8 A Systematic Approach to Predict Unbiased Branches

behavior in that certain context cannot be modeled through Markov
stochastic processes of any order. Based on laborious simulations we show
that the percentages of difficult branches are quite significant (at average
between 6% and 24%, depending on the different used prediction contexts
and their lengths), giving a new research challenge and a useful niche for
further research. Present-day branch predictors are using limited prediction
information (local and global correlation and path information). We’ll show
that for some branches this information is not always sufficiently relevant
and, therefore, these branches cannot be accurately predicted using present-
day predictors. Consequently, we think it is important to find other relevant
information that is determining branches’ behavior in order to use it for
designing better predictors. In our opinion such relevant prediction
information could consist in branch’s condition sign (positive, negative or
zero). More precisely, a certain branch associated with its condition’s sign
value (+, -, 0) will be perfectly biased. If its condition sign will be
predictable, the branch’s behavior will be predictable too because the
branch’s output is deterministically correlated with the condition’s sign.
Thus, it appears rationale trying to predict current branch’s condition sign
based on the local/global condition histories. We can also use the last branch
condition as new prediction information in some state-of-the-art branch
predictors in order to increase prediction accuracy.

This booklet is organized as follows. Chapter 2 gives a brief
overview of related work. Chapter 3 describes our methodology of finding
difficult predictable branches. Chapter 4 describes the present-day branch
predictors used in this work and continues with some proposed condition-
history-based branch prediction methods. Chapter 5 presents some modified
present-day branch predictors that use the last known branch condition as
prediction information. Chapter 6 presents an advanced simulator for
unbiased branches’ prediction. Finally, Chapter 7 concludes the booklet and
suggests directions for further work.

2. Related Work

Representative hardware and compiler-based branch prediction
methods have been developed in recent years in order to increase
instruction-level parallelism. Branch prediction is an important component
of modern microarchitectures, despite of their deeper pipelines that
increased misprediction latency. Therefore, improvements in terms of
branch prediction accuracy are essential in order to avoid the penalties of
mispredictions. In this section we presented only the works that are most
closely related to the proposed approach.

Chang et al., introduced in [Cha94] a mechanism called branch
classification in order to enhance branch prediction accuracy by classifying
branches into groups of highly biased (mostly-one-direction branches)
respectively unbiased branches, and used this information to reduce the
conflict between branches with different classifications. In other words, they
proposed a method that classifies branches according to their dynamic taken
rate and assigns branches from each class to different predictors. The class
of branches is determined by their overall dynamic taken rate collected
during program profiling. With their branch classification model they
showed that using a short history for the biased branches and a long history
for the unbiased branches improves the performance of the global history
Two-Level Adaptive Branch predictors. In contrast to our work, the authors
are classifying branches irrespective of their attached context (local and
global histories, etc.) involving thus an inefficient approach. Due to this
rough classification the corresponding predictors are not optimally chosen,
simply because it is impossible to find an optimal predictor for some
classes.

Mahlke et al., proposed in [Mah94] a compiler technique that uses
predicated execution support to eliminate branches from an instruction
stream. Predicated execution refers to the conditional execution of an
instruction based on the value of a boolean source operand – the predicate of
the instruction. This architectural support allows the compiler to convert
conditional branches into predicate defining instructions, and instructions
along alternative paths of each branch into predicated instructions.
Predicated instructions are fetched regardless of their predicate value. Thus,
instructions whose predicate value is true are executed normally, while
instructions whose predicate is false are nullified. Predicated execution

10 A Systematic Approach to Predict Unbiased Branches

offers the opportunity to improve branch handling in superscalar processors.
Eliminating frequently mispredicted branches may lead to a substantial
reduction in branch prediction misses, and as a result, the performance
penalties associated with the eliminated branches are removed. The authors
use compiler support for predicated execution based on a structure called
hyperblock. The goal of hyperblock formation is to group basic blocks
eliminating unbiased branches and leaving highly biased branches. They
selected the unbiased branches based on taken frequency distributions. Their
experimental results show that leaving only highly biased branches with
predicated execution support, the prediction accuracy is higher.

Nair has first introduced dynamic branch prediction based on path
correlation [Nair95]. The basic observation behind both pattern-based and
path-based correlation is that some branches can be more accurately
predicted if the path leading to these branches is known. Path-based
correlation attempts to overcome the performance limitations of pattern-
based correlation arising from pattern aliasing situations, where knowledge
of the path leading to a branch results in higher predictability than
knowledge of the pattern of branch outcomes along the path. Nair proposed
a hardware scheme which records the path leading to a conditional branch in
order to predict the outcome of the branch instruction more accurately. He
adapted a pattern-based correlation scheme, replacing the pattern history
register with a g-bit path history register which encodes the target addresses
of the immediately preceding p conditional branches. Ideally, all bits of the
target address should be used to ensure that each sequence of p addresses
has a unique representation in the register. Since such schemes are too
expansive to be implemented in hardware, Nair used a simplified scheme
which uses a subset of q bits from each of the target addresses. Limiting the
number of bits from the branch address could result path aliasing – the
inability of the predictor to distinguish two distinct paths leading to a
branch. Unfortunately, this path correlation scheme does not show any
significant improvement over pattern-based correlation [Nair95]. Nair’s
explanation for this is that for a fixed amount of hardware in the prediction
tables, path-based correlation uses a smaller history than pattern-based
correlation because the same number of bits represents fewer basic blocks in
the path history register than branch outcomes in the pattern history register.
Despite this, path based correlation is better than pattern-based correlation
on some benchmarks – especially when history information is periodically
destroyed due to context switches –, indicating that with a better hashing
scheme the pattern correlation schemes could be outperformed.

A quite similar approach is proposed by Vintan and Egan in
[Vin99b] – their paper represents the genesis of this work. The authors

Related Work 11

illustrated, based on examples, how a longer history could influence the
behavior of a branch (changing it from unbiased to biased). They also
showed that path information could also reduce the branch’s entropy. The
main contribution of this paper is related to the prediction accuracy gain
obtained by extending the correlation information available in the
instruction fetch stage. Based on trace-driven simulation the authors proved
for relatively short global branch history patterns, that a path-based
predictor overcomes a pattern-based predictor at the same hardware budget.
The main difference, comparing with Nair’s approach, is that here the
authors are using both the path and respectively the history information in
order to do better predictions. They show that a scheme based on this
principle performs better than a classical GAp scheme, at the same level of
complexity. Particularly useful information has been gleaned regarding the
interaction between path length and the number of replacements required in
the PHT.

Dynamic branch prediction with neural methods, was first
introduced by Vintan [Vin99a, Ega03], and further developed by Jiménez
[Jim01]. Despite the neural branch predictor’s ability to achieve very high
prediction rates and to exploit deep correlations at linear costs, the
associated complexity due to latency, large quantity of adder circuits, area
and power are still obstacles to the industrial adoption of this technique.
Anyway, the neural methods seem to be successfully for future
microprocessors taking into account that they are already implemented in
Intel’s IA-64 simulators. The path-based neural predictors [Jim03] improve
the instructions-per-cycle (IPC) rate of an aggressively clocked
microarchitecture by 16% over the original perceptron predictor [Jim01]. A
branch may be linearly inseparable as a whole, but it may be piecewise
linearly separable with respect to the distinct associated program paths.
More precisely, the path-based neural predictor combines path history with
pattern history, resulting superior learning skills to those of a neural
predictor that relies only on pattern history. The prediction latency of path-
based neural predictors is lower, because the computation of the output can
begin in advance of the prediction, each step being processed as soon as a
new element of the path is executed. Thus, the vector of weights used to
generate prediction, is selected according to the path leading up to a branch
– based on all branch addresses from that path – rather than according to the
current branch address alone as the original perceptron does. This selection
mechanism improves significantly the prediction accuracy, because, due to
the path information used in the prediction process, the predictor is able to
exploit the correlation between the output of the branch being predicted and
the path leading up to that branch. To generate a prediction, the correlations

12 A Systematic Approach to Predict Unbiased Branches

of each component of the path are aggregated. This aggregation is a linear
function of the correlations for that path. Since many paths are leading to a
branch, there are many different linear functions for that branch, and they
form a piecewise-linear surface separating paths that lead to predicted taken
branches from paths that lead to predicted not taken branches. The
piecewise linear branch prediction [Jim05], is a generalization of neural
branch prediction [Jim01], which uses a single linear function for a given
branch, and respectively path-based neural branch prediction [Jim03], which
uses a single global piecewise-linear function to predict all branches. The
piecewise linear branch predictors use a piecewise-linear function for a
given branch, exploiting in this way different paths that lead to the same
branch in order to predict otherwise linearly inseparable branches. The
piecewise linear branch predictors exploit better the correlation between
branch outcomes and paths, yielding an IPC improvement of 4% over the
path-based neural predictor [Jim05].

A conventional path-based neural predictor achieves high prediction
accuracy, but its very deeply pipelined implementation makes it both a
complex and power-intensive component, since for a history length of p it
uses – to store the weights – p separately indexed SRAM arrays organized
in a p-stage predictor pipeline. Each pipeline stage requires a separate row-
decoder for the corresponding SRAM array, inter-stage latches, control
logic and checkpointing support, all of this adding power and complexity to
the predictor. Loh and Jiménez proposed in [Loh05c] two techniques to
address this problem. The first decouples the branch outcome history length
from the path history length using shorter path history and a traditional long
branch outcome history. In the original path-based neural predictor, the path
history was always equal to the branch history length. The shorter path
history allows the reduction of the pipeline length, resulting in decreased
power consumption and implementation complexity. The second technique
uses the bias-weights to filter out highly-biased branches (mostly always
taken or mostly always not taken branches), and avoids consuming update
power for these easy-to-predict branches. For these branches the prediction
is determined only by the bias weight, and if it turns out to be correct, the
predictor skips the update phase which saves the associated power. The
proposed techniques improve the prediction accuracy with 1%, and more
important, reduce power and complexity by decreasing the number of
SRAM arrays, and reducing predictor update activity by 4-5%. Decreasing
the pipeline depth to only 4-6 stages it is reduced the implementation
complexity of the path-based neural predictor.

Tarjan and Skadron introduced in [Tar05] the hashed perceptron
predictor, which merges the concepts behind the gshare [McFar93] and

Related Work 13

path-based perceptron predictors [Jim03]. The previous perceptron
predictors assign one weight per local, global or path branch history bit.
This means that the amount of storage and the number of adders increases
linearly with the number of history bits used to make a prediction. One of
the key insights of Tarjan’s work is that one-to-one ratio between weights
and number of history bits is not necessary. By assigning a weight not to a
single branch but a sequence of branches (hashed indexing), a perceptron
can work on multiple partial patterns making up the overall history. The
hashed indexing consists in XORing a segment of the global branch history
with a branch address from the path history. Decoupling the number of
weights from the number of history bits used to generate a prediction allows
the reduction of adders and tables almost arbitrarily. Using hashed indexing,
linearly inseparable branches which are mapped to the same weight can be
accurately predicted, because each table acts like a small gshare predictor
[McFar93]. The hashed perceptron predictor improves accuracy by up to
27.2% over a path-based neural predictor.

Loh and Jiménez introduced in [Loh05b] a new branch predictor that
takes the advantage of deep-history branch correlations. To maintain
simplicity, they limited the predictor to use conventional tables of saturating
counters. Thus, the proposed predictor achieves neural-class prediction rates
and IPC performance using only simple PHT (pattern history table)
structures. The disadvantage of PHTs is that their resource requirements
increase exponentially with branch history length (a history length of p
requires 2p entries in a conventional PHT), in contrast to neural predictors,
whose size requirements increase only linearly with the history length. To
deal with very long history lengths, they proposed a Divide-and-Conquer
approach where the long global branch history register is partitioned into
smaller segments, each of them providing a short branch history input to a
small PHT. A final table-based predictor combines all of these per-segment
predictions to generate the overall decision. Their predictor achieves higher
performance (IPC) than the original global history perceptron predictor,
outperforms the path-based neural predictors, and even achieves an IPC rate
equal to the piecewise-linear neural branch predictor. Using only simple
tables of saturating counters, it is avoided the need for large number of
adders, and in this way, the predictor is feasible to be implemented in
hardware.

Desmet et al. [Des04] proposed a different approach for branch
classification. They evaluated the predictive power of different branch
prediction features using Gini-index metric, which is used as selection
measure in the construction of decision trees. Actually, Gini-index is a
metric of informational energy and in this case is used to identify the

14 A Systematic Approach to Predict Unbiased Branches

branches with high entropy. In contrast to our work Desmet used as input
features both dynamic information (global and local branch history) and
static information (branch type, target direction, ending type of taken-
successor-basic-block).

In [Hei99a] the authors identified some program constructs and data
structures that create “hard to predict” branches. In order to accurately
predict difficult branches the authors find additional correlation information
beyond local and global branch history. In their approach the prediction
table is addressed by a combination between structural information, value
information and history of values that are tested in the condition of
respective branch. Unlike our work, Heil et al. didn’t use the path history
information in order to do better predictions. Using the proposed prediction
method based on data values significantly improves prediction accuracy for
some certain difficult branches but the overall improvements are quite
modest. However there are some unsolved problems: they tested only
particular cases of difficult branches, and also, they didn’t approach branch
conditions with two input values. Their final conclusion suggests that
researchers must focus on the strong correlation between instructions
producing a value and, respectively, the branch condition that would be
triggered by that certain value.

In [Cha02] the authors are focusing on some difficult predictable
branches in a Simultaneous Subordinate Micro-Threading (SSMT)
architecture. They defined a difficult path being a path that has a terminating
branch which is poorly predicted when it executes from that path. A path
represents a particular sequence of control-flow changes. It is shown that
between 70% and 93.5% of branch mispredictions are covered by these
difficult paths, involving thus a significant challenge in branch prediction
paradigm. The proposed solution in dealing with these difficult predictable
branches consists in dynamically construct micro-threads that can
speculatively and accurately pre-compute branch outcomes, only along
frequently mispredicted paths. Obviously, micro-thread predictions must
arrive in time to be useful. Ideally, every micro-thread would complete
before the fetch of the corresponding difficult branch. By observing the
data-flow within the set of instructions guaranteed to execute each time the
path is encountered, it can be extracted a subset of instructions that will pre-
compute the branch. The proposed micro-architecture contains structures to
dynamically identify difficult paths (Path Cache), construct micro-threads
(Micro-Thread Builder) and communicate predictions to the main thread.
The proposed technique involves realistic average speed-ups of up to 10%
but the average potential speed-up through perfect prediction of these
difficult branches is about 100%, suggesting the idea’s fertility.

Related Work 15

Unfortunately the authors didn’t investigate why these paths, respectively
their associated final branches, are difficult predictable. In other words, a
very important question is: why these “difficult paths” frequently lead to
miss-predictions? We could suspect that we already gave the answer in our
paper because these “difficult branches” might be, at least partially, exactly
the unbiased branches in the sense defined by us, and, therefore, difficult
predictable. They could be more predictable even in a single threaded
environment, by sufficiently growing history pattern length or extending
prediction information, as we’ll show further in this work. Thus, our
hypothesis is that SSMT environment represents a sufficient solution in
order to solve these difficult branches, as the authors shown, but not a
necessary one.

In [Che03] the authors proposed a new approach, called ARVI
(Available Register Value Information), in order to predict branches based
on partial register values along the data dependence chain leading up to the
branch. The authors show that for some branches the correlation between
such register value information and the branch’s outcome can be stronger
than either history or path information. Thus, the main idea behind the
ARVI predictor is the following: if the essential values in the data
dependence chain, that determine the branch’s condition, should be
identified, and those values have occurred in the past, then the branch’s
outcome should be known. If the values involved in the branch condition are
the same as in a prior occurrence then the outcome of the branch will be the
same, too. Thus, if the branch’s register values are available then a look up
table can provide the last branch’s outcome occurred with the same values.
Unfortunately, the branch’s register values are rarely available at the time of
prediction. However, if values are available for registers along the
dependence chain that leads up to the branch, then the predictor can use
these values to index into a table and reuse the last behavior of the branch
occurred in the same context. Therefore, instead of relying only on branch
history or path, the ARVI predictor includes the data dependent registers as
part of the prediction information. The ARVI predictor uses a Data
Dependence Table (DDT) to extract the registers corresponding to
instructions along the data dependence chain leading up to the branch. The
branch’s PC and the identifiers of the data dependent registers are hashed
together and used to index the prediction table. The values of the data
dependent registers are hashed together and used as a tag to distinguish the
occurrences of the same path having different values in the registers. Thus,
the ARVI predictor uses both path and value-based information to classify
branch instances. A two-level predictor using ARVI at the second level
achieves a 12.6% overall IPC improvement over the state-of-the-art two

16 A Systematic Approach to Predict Unbiased Branches

level predictors, for the SPEC’95 integer benchmarks. The authors selected
SPEC’95 integer benchmarks because their branch behavior was extensively
studied permitting comparisons between different works. In our opinion, if
dynamic branches that are unbiased in their branch history or path contexts
[Vin06] are biased in their value history context, the benefit could be
remarkable. An analysis in this sense should be effectuated.

Z. Smith in his work [Smi98] determined through simulation on the
SPEC’95 benchmarks that the majority of branch mispredictions come from
a relatively small number of static branches. Therefore, he identified “bad”
branches based on the distribution of mispredictions – a function of the
number of mispredictions per branch using the gshare predictor with 12
history bits. An analysis of branches having a relatively high number of
mispredictions shows that they could be really less predictable but without
importance due to their relatively low number of dynamic instances, and, on
the other hand, some of them could be predictable because the number of
mispredictions is, however, far less then the number of branch’s dynamic
instances. Consequently, there is no strong correlation between branch’s
predictability or global prediction accuracy and the distribution of
mispredictions. In order to increase the predictability of mostly mispredicted
branches, Smith evaluated the possibility to predict branch outcomes based
on a value history. The idea is to use a context-based predictor whose
prediction table is indexed by a register value instead of the XOR between
the PC and global history as in gshare. In their implementation, only the
first (non-immediate) branch operand is used as prediction context, because,
as he shows, the majority of branches have the second operand equal with
zero. However, using both branch operands as prediction information could
be better. Using a history of only 2 values together with the value of the
outer loop counter (an iteration counter associated to the enclosing loop’s
branch), Smith obtained a branch prediction accuracy of 93.4%.

In [Hei99b] the authors observed that many important branches that
are hard to predict based on branch history and path become easily
predictable if data-value information is used. First, they analyzed a
technique called speculative branch execution that uses a conventional data-
value predictor to predict the input values of the branch instruction and,
after that, executes the branch instruction using the predicted values. The
main disadvantage of this method consists in the relatively high prediction
latency, because the operand-value prediction is followed by the pre-
calculation of the branch’s condition. Therefore, they proposed a Branch
Difference Predictor (BDP) that maintains a history of differences between
branch source register operands and uses it in the prediction process.
Consequently, the value history information is used directly for branch

Related Work 17

prediction, reducing thus the latency. Since branch outcomes are determined
by subtracting the two inputs, the branch source differences correlate very
well with the branch outcomes. The branch difference history is maintained
per static branch in a Value History Table (VHT) and it is retrieved using
the branch’s PC. By using branch differences, the number of patterns is very
high, since a certain static branch instruction may produce many values.
Thus, predicting all branches through this method leads either to excessive
storage space requirements or to significant table interference. Therefore, in
their prediction mechanism, only the difficult branches are predicted based
on the branch source differences using the Rare Event Predictor (REP),
while most branches are predicted using a conventional predictor (e.g.
gshare). They considered that a branch is difficult if it is mispredicted by
the conventional predictor. Therefore, REP’s updating introduces only
branches mispredicted by the conventional predictor but correctly predicted
by REP. When a branch instruction occurs, the VHT and the REP are
accessed in parallel with the PC and global branch history. If the value
difference history matches a REP tag, then the REP provides the prediction.
If the REP does not contain that certain pattern, the conventional branch
predictor generates the prediction. Their results show that the majority of
prediction accuracy improvement is gained by using a single branch
difference, while adding a second or third difference results in little
additional improvement. The BDP reduces the misprediction rate by up to
33% compared to gshare and up to 15% compared to Bi-Mode predictors, in
the SPEC’95 integer benchmarks. A first important difference between
Heil’s approach and ours is that we are focalizing on unbiased branches
identified in our previous work [Vin06] instead of Heil’s difficult branches.
However, the main difference is that we correlate branch’s outcome with the
sign of the condition’s difference while Heil et al. correlate it with the value
of the condition’s difference. As we’ll further show, using signs instead
values involves better prediction accuracies and less storage necessities.
Furthermore, we use a sign-history of up to 256 condition differences in
contrast to the value-history of up to 3 condition differences exploited in
[Hei99b]. Another important difference between the two approaches is the
architectural one, since we predict branches using some state-of-the-art
Markov and neural predictors.

Thomas et al. [Tho03] introduced new branch prediction information
that consists in affector branches. They identify for each dynamic branch
from a long global history, a set of branches called affectors, which control
the computation that directly affect the source operands of the current
dynamic branch. Since affectors have a direct effect on the outcome of a
future branch, they have a high correlation with that branch. The affector

18 A Systematic Approach to Predict Unbiased Branches

information is represented as a bitmap having all bits corresponding to the
affector branches set to 1 and, respectively, those of non-affectors set to 0.
The affector information is maintained based on runtime dataflow
information for each architectural register as entries in an Affector Register
File (ARF). When the processor encounters a conditional branch, all entries
in the ARF are shifted left by one bit and the least significant bit is made 0.
When a register-writing instruction occurs, the ARF entries corresponding
to the source registers are ORed together and written into the ARF entry of
the destination register with the least significant bit set to 1. Thus, the
affector information for the destination register is generated as a union of
the affector histories corresponding to the source registers, while the least
significant bit, set to 1, marks the last branch from the global history as an
affector. The affector branch information for a branch instruction is
inherited from the affector information corresponding to its source registers.
Therefore, when a prediction is to be made for a certain branch, the affector
information of its source registers are ORed together in order to determine
its affector branches. The authors also proposed different prediction
schemes that use the affector branch information.

In another work Thomas et al. [Tho01] improved instruction centric
value prediction by using a dynamic dataflow inherited speculative context
(DDISC) for hard-to-predict instructions. The DDISC consists in a
compression of the PCs and the predicted values of the predictable source
producer instructions. The context is determined by assigning a signature to
each node in the dataflow graph. The signature of a predictable instruction is
its value predicted by a conventional predictor. The signature of
unpredictable non-load instructions is inherited from the signatures of its
operand producers. In the case of multiple operands, the signature of
unpredictable non-load instructions is the XOR of the signatures of their
operand producers. The signature of unpredictable load instructions is
inherited from the signature of the preceding store instruction that wrote the
value into the same memory location. The DDISC for a certain instruction is
obtained by rotating its calculated signature by a value determined by the
PC (e.g. the last five bits of the PC). Their simulation results show that
introducing dataflow-based contexts the prediction accuracy improvement
ranges from 35% to 99%.

Constantinides et al. [Con04] presented a method of detecting
instruction-isomorphism and its application to dynamic branch prediction. A
dynamic instruction is considered isomorphic if its component graph is
identical with the component graph of an earlier executed dynamic
instruction. The component graph of a dynamic instruction can include
information about the instruction, its dynamic data dependence graph and its

Related Work 19

input data. Two cases of instruction isomorphism can be distinguished:
isomorphic-equality and pseudo-isomorphism. In the case of isomorphic
equality the instructions are isomorphic and they have the same outputs,
while in the pseudo-isomorphism case, the instructions are isomorphic but
their outputs are not equal. The isomorphism detection process is preceded
by component-graph transformations that may convert non-isomorphism to
isomorphic-equality by removing information from the component graph
that does not affect the outcome of the instruction. The isomorphism
detection mechanism contains four units: the Register-Signature File (RSF),
the Component Graph Encoding/Transformation mechanism (CGET), the
Memory Signature File (MSF) and the Isomorphism Detection Table (IDT).
The RSF is accessed with the source register names to read the signatures –
encoded component graphs. The CGET takes the instruction’s source
signatures and creates a new signature, which represents the instruction’s
encoded/transformed component-graph. If the instruction writes to a register
the new signature is written into the RSF entry corresponding to the
destination register. To determine if an instruction is isomorphic with a
previously executed instruction, its signature – produced by CGET – is used
to access the IDT. The IDT also returns the branch direction in the case of
branch prediction. Isomorphism detection must wait for decoded instruction
information and, thus, the isomorphic branch predictor has relatively high
latency. Therefore, Constantinides et al. proposed a hybrid branch prediction
mechanism composed by a fast conventional predictor and a slower
isomorphic-based predictor. Consequently, the isomorphic prediction –
available few cycles after the conventional prediction – is used to validate
and possibly override the prediction provided by the fast base predictor.

In [Gon99] and [Gon01] González et al. introduced a branch
prediction through value prediction unit (BPVP) that pre-computes the
outcomes of branches by predicting their input values. Since, the accuracy
of value predictors is lower than that of the conventional branch predictors,
speculative branch pre-computation must be applied selectively. Therefore,
they proposed a hybrid branch prediction mechanism involving a correlating
branch predictor (e.g. gshare) and a BPVP that uses a conventional value
predictor. The value predictor is used together with an Input Information
Table (IIT) and, respectively, an additional logic to detect the instructions
that generate the branch’s inputs. Each architectural register has an entry in
the IIT that stores the PC of the latest instruction having the corresponding
register as destination and, respectively, the value computed speculatively
by the latest compare instruction having the corresponding register as
destination. The compare instructions are speculatively pre-executed
according to their predicted inputs and the speculative results are stored in

20 A Systematic Approach to Predict Unbiased Branches

the IIT. The mechanism has different behaviors depending on the branch
that is predicted. In the case of branches with inputs produced by arithmetic
or load instructions, the IIT is accessed with the source register names to
read the PCs of the latest instructions that had as destination the branch’s
source registers (detection of the instructions that produces the branch
inputs). The PCs are used to access the value predictor that predicts the
inputs of the branch. The branch’s outcome is speculatively pre-computed
based on the predicted inputs. In the case of branches with inputs produced
by compare instructions, the IIT is accessed with the source register names
to read the comparison’s speculative result. The outcome of the branch is
speculatively pre-computed based on this speculative comparison result.
The BPVP-gshare predictor achieves a speedup of 8% over the 2bit-gshare
predictor. The instruction centric value prediction within the BPVP should
be replaced with register centric value prediction [Vin05], reducing the
complexity, hardware costs and power consumption. Thus, branches should
be pre-computed speculatively based on their input values predicted with an
optimized register centric value predictor (2-level adaptive value predictor
instead of PPM).

In [Rot99] call targets are correlated with the instructions that
produce them rather than with the call’s global history or the previous
branches’ targets. The proposed approach pre-computes virtual function
call’s (v-call) targets. V-calls’ targets are hard predictable even through
path-history based schemes that exploit the correlation between multiple v-
calls to the same object reference. Object oriented programming increases
the importance of v-calls. The proposed technique dynamically identifies the
sequence of instructions that computes a v-call target. Based on this
instruction sequence it is possible to pre-calculate the target before the
actual v-call is encountered. This pre-calculation can be used to supply a
prediction. The approach reduces v-call target miss-predictions with 24%
over a path-based two level predictor.

In [Vin03] the authors proposed to pre-compute branches instead of
predicting them. Pre-computing branches means to determine the outcome
of a branch as soon as all branch operands are known. The instruction that
produced the last operand also triggers the branch condition estimation and,
after this operation, it correspondingly computes the branch outcome.
Similarly to branch history prediction, branch information is cached into a
“prediction table” (PT). Each PT entry has the following fields: TAG (the
lower part of the PC), PC1 and PC2 (the PCs of the instructions that
produced the branch operand values), OPC (the opcode of the branch),
nOP1 and nOP2 (the register names of the branch operands), PRED (for the
branch outcome) and a LRU field (Least Recently Used). The register file

Related Work 21

has two additional fields for each register: LP (the PC of the last producer)
and RC (a reference counter which is incremented by each instruction that
modifies a register linked by a branch instruction stored in the PT and,
respectively, decremented when the corresponding branch instruction is
evicted from the PT). The PC of any non-branch instruction that modifies at
least one register is recorded into the supplementary LP (Last Producer)
field of its destination register. The first issue of a particular branch in the
program is predicted with a default value (not taken). After the branch’s
execution, a PT entry is allocated and updated. Every time after a non-
branch instruction – having the corresponding RC field greater than 0 – is
executed, the PC1 and PC2 fields from the PT are searched upon its PC.
When a hit occurs, the branch stored in that PT entry is executed and the
outcome is stored into the PRED bit. When the branch is issued, its outcome
is found in the PT, as it was previously computed, and thus its behavior is
perfectly known before execution. From the pure prediction accuracy point
of view this method seems to be almost perfect. Unfortunately, the
improvement in prediction accuracy brought by this scheme must be paid in
terms of timing – because branches frequently follow too closely after the
source producer instructions – and hardware costs. Based on the pre-
computing branch concept [Vin03] Aamer et al. presented in [Aam03] a
study regarding the number of instructions occurred between the execution
of the instruction that produced the last operand of a branch and the
execution of that branch. Their simulations show that the average distance
between the last source producer and branch is less than the ideal theoretical
distance. If the operand producer instruction is too close to the
corresponding branch then the branch would have to postpone processing
for a few cycles, until the operand producer instruction is finished. For these
branches a BTB can be used, improving thus the performance. Thus, the
branch outcomes can be obtained far enough in advance so that some
performance improvement can be still achieved.

Aragón et al. presented in [Ara01] a new approach to improve
branch predictors: selective branch prediction reversal. The main idea is
that many branch mispredictions can be avoided if they are selectively
reversed. Therefore, they proposed a Branch Prediction Reversal Unit
(BPRU) that reverses predictions of branches likely to be mispredicted,
based on the path leading to the branch (including the PC of the input
producers) and, respectively, the predicted values of the branch inputs. The
BPRU uses the previously presented BPVP-gshare hybrid branch predictor
[Gon99] and a Reversal Table (RT). Each entry of the RT stores a reversal
counter implemented as an up/down saturating counter, and a tag. When a
branch is predicted, the RT is accessed by hashing together the PCs of its

22 A Systematic Approach to Predict Unbiased Branches

input producers, the predicted input values and the path leading to the
branch. The most significant bit of the counter indicates if the predicted
branch outcome must be reversed. When the correct branch outcome is
available, the corresponding RT entry is updated by incrementing the
reversal counter if the preliminary branch outcome was correct and,
respectively, decrementing the counter otherwise. The experimental results
show average speedups of 6% over the original BPVP-gshare and,
respectively, of 14% over the 2bit-gshare predictor.
 In [Gao06] the authors initially implemented a PPM-based branch
predictor using as context the global branch history. They associated a
signed saturating prediction counter ranging between [-4, 4] to each PC-
history pair. The counter was incremented if the branch outcome was taken
and decremented otherwise. When both the branch address and history
pattern were matched, the corresponding counter provided the prediction. In
the case of multiple matches for a branch with different history lengths, the
prediction counter afferent to the longest history was used. However, as they
show, the longest history match may not be the best choice, and, therefore,
they proposed another scheme called PPM with the confident longest match
that uses the prediction counter as a confidence measure. This scheme
generates a prediction only when the counter is a non-zero value. The
authors observed that in the case of multiple matches with different history
lengths, the counters may not agree with each other and different branches
may favor different history lengths. Thus, the most important scheme
introduced by Gao and Zhou in this paper, predicts branch outcomes by
combining multiple partial matches through an adder tree. The Prediction by
combining Multiple Partial Matches (PMPM) algorithm selects up to L
confident longest matches and sums the corresponding counters to make a
prediction. For the fully biased (always taken or always not taken) branches
they use a bimodal predictor, the PMPM predictor being accessed only for
not fully biased branches. The realistic PMPM predictor has seven global
prediction tables indexed by the branch address, global history and path,
and, respectively, a local prediction table indexed by the branch address and
local history. When the PMPM is accessed for prediction, up to 4 counters
from the global history tables are summed with the counter from the local
prediction table, if there is a hit. If the sum is zero, the bimodal predictor is
used. Otherwise the sign of the sum provides the prediction. The prediction
counter from the bimodal prediction table is always updated. The prediction
counter from the local prediction table is always updated in the case of hit,
while the counters of the global prediction tables that have been included in
the summation are updated only when the overall prediction is wrong or the
absolute value of the sum is less than a certain threshold. Their results show

Related Work 23

that combining multiple partial matches provides higher prediction accuracy
than a single partial match, decreasing the average misprediction rate to
3.41%. A first important difference between the approach presented in
[Gao06] and our branch difference prediction by combining multiple partial
matches developed in paragraph 4.5.3 is that we are focalizing on the
unbiased branches identified in our previous work [Gel06, Vin06] instead of
“not fully biased” branches. The authors defined a “fully biased” branch
being a branch in a certain dynamic context having set its attached bias
counter to a maximum value (the counter is incremented each time that
branch has a biased behavior and decremented otherwise). Probably it
would be better to say “highly biased” branch instead of “fully biased”,
meaning that it was highly biased (maximum counter) during the “last”
processing period (maximum counter at the current prediction moment).
However, the main difference is that they used global branch history, while
we used local branch difference history. Another important difference
consists in how the multiple Markov predictions are combined: we used
majority vote (more efficient for our approach) instead of the adder tree
used by Gao and Zhou.
 In [Sri06] the authors proposed a hybrid branch prediction scheme
that employs two PPM predictors, one predicts based on local branch
history and the other predicts based on global branch history. For both the
local and global PPM predictors, if the local and, respectively, global
history were not matched, then shorter patterns are searched, and so on, until
a match is found. When a pattern match occurs, the outcome of the branch
that succeeded the pattern during its last occurrence is returned as
prediction. The two independent predictions are combined through a
perceptron. The output of the perceptron is computed as Y=W0 + W1PL +
W2PG, where the inputs PL and PG corresponds to the predictions generated
by the local and, respectively, global PPM predictor (-1 if not taken and +1
if taken). The final prediction is taken if the output Y is positive and not
taken if Y is negative. The table of weights is indexed by the lower 20 bits of
the branch’s PC. The perceptron is updated by incrementing the weights
whose inputs match the branch outcome and decrementing those with
mismatch. The Neuro-PPM branch predictor achieves an average
misprediction rate of 3%.

3. Finding Difficult-to-Predict Branches

Our first goal is to find the difficult predictable branches in the
SPEC2000 benchmarks [SPEC]. As we already pointed out, we consider
that a branch in a certain context is difficult predictable if it is unbiased –
meaning that the branch behavior (Taken/Not Taken) is not sufficiently
polarized for that certain context (local branch history, global history, etc.) –
and the taken and not taken outcomes are shuffled. The second goal is to
improve prediction accuracy for branches with low polarization rate,
introducing new feature sets that will increase their polarization rate and,
therefore, their predictability.

3.1. Methodology of Identifying Unbiased Branches

A feature is the binary context on p bits of prediction information
such as local history, global history or path. Each static branch finally has
associated k dynamic contexts in which it can appear (pk 2≤). A context
instance is a dynamic branch executed in the respective context. We
introduce the polarization index (P) of a certain branch context as follows:

⎩
⎨
⎧

<
≥

==
5.0,
5.0,

),max()(
01

00
10 ff

ff
ffSP i (3.1)

where:

• { }kSSSS ...,,, 21= = set of distinct contexts that appear during all
branch instances;

• k = number of distinct contexts, pk 2≤ , where p is the length of the
binary context;

•
NTT

NTf
NTT

Tf
+

=
+

= 10 , , NT = number of “not taken” branch

instances corresponding to context Si, T = number of “taken” branch

Finding Difficult-to-Predict Branches 25

instances corresponding to context Si, ki ...,,2,1)(=∀ , and
obviously 110 =+ ff ;

• if kiSP i ...,,2,1)(,1)(=∀= , then the context iS is completely
biased (100%), and thus, the afferent branch is highly predictable;

• if kiSP i ...,,2,1)(,5.0)(=∀= , then the context iS is totally
unbiased, and thus, the afferent branch is not predictable if the taken
and not taken outcomes are shuffled.

If the taken and respectively not taken outcomes are grouped

separately, even in the case of a low polarization index, the branch is
predictable. The unbiased branches are not predictable only if the taken and
not taken outcomes are shuffled, because in this case, the predictors cannot
learn their behavior. For this study we introduce the distribution index for a
certain branch context, defined as follows:

⎪⎩

⎪
⎨

⎧

>
⋅

=
=

0,
),min(2

0,0
)(

t
t

t

i n
TNT

n
n

SD (3.2)

where:

• nt = the number of branch outcome transitions, from taken to not
taken and vice-versa, in context Si;

•),min(2 TNT⋅ = maximum number of possible transitions;
• k = number of distinct contexts, pk 2≤ , where p is the length of the

binary context;
• if kiSD i ...,,2,1)(,1)(=∀= , then the behavior of the branch in

context Si is “contradictory” (the most unfavorable case), and thus its
learning is impossible;

• if kiSD i ...,,2,1)(,0)(=∀= , then the behavior of the branch in
context Si is constant (the most favorable case), and it can be
learned.

As it can be observed in Figure 3.1, we want to systematically

analyze different feature sets used by different present-day branch predictors

26 A Systematic Approach to Predict Unbiased Branches

in order to find and, hopefully, to reduce the list of unbiased branch contexts
(contexts with low polarization P).

GH XOR PC
16 bits

GH
16 bits

LH
16 bits

GH XOR PC
20 bits

GH
20 bits

LH
20 bits

GH XOR PC
p bits

GH
p bits

LH
p bits

U

U

U

U

U

U

U

U Unbiased
branches

GH XOR PC
16 bits

GH
16 bits

LH
16 bits

GH XOR PC
16 bits

GH XOR PC
16 bits

GH
16 bits
GH

16 bits

LH
16 bits
LH

16 bits

GH XOR PC
20 bits

GH
20 bits

LH
20 bits

GH XOR PC
20 bits

GH XOR PC
20 bits

GH
20 bits
GH

20 bits

LH
20 bits
LH

20 bits

GH XOR PC
p bits

GH
p bits

LH
p bits

GH XOR PC
p bits

GH XOR PC
p bits

GH
p bits
GH
p bits

LH
p bits
LH
p bits

U

U

U

U

U

U

U

U Unbiased
branches

Figure 3.1. Reducing the number of unbiased branches through feature set
extension.

We approached an iterative methodology: a certain Feature Set is
evaluated only on the unbiased branches determined with the previous
Feature Sets, because the rest were solved with the previously considered
Feature Sets. Gradually this list is shortened by increasing the lengths of
Feature Sets and reapplying the algorithm. Thus, the final list of unbiased
branches contains only the branches that were unbiased for all their
contexts. The contexts’ lengths were varied from 16 bits to 28 bits. For the
final list of unbiased branches we will try to find new relevant feature sets in
order to further improve their polarization index and, therefore, the
prediction accuracy.

This approach is more efficient than one which repeats each time the
algorithm on all branches. Beside producing some unpleasant aspects
related to simulation time (days / benchmark) and memory (gigabytes of
memory needed), the second method would prove even not very accurate.
This is because some of the branches that are not solved by a long context
can be solved by a shorter one. Through our iterative approach we avoided
the occurrence of false problems extending the context.

Finding Difficult-to-Predict Branches 27

0 1 1 0 1 0 1 0
Context (8 bits)

– 750 T and 250 NT P=0.75

0 0 1 1 0 1 0 1 0

1 0 1 1 0 1 0 1 0

– 500 T, 0 NT P=1.0

– 250 T, 250 NT P=0.5

Context (9 bits)

Context (9 bits)
Context extension

Context extension

0 1 1 0 1 0 1 0
Context (8 bits)

– 750 T and 250 NT P=0.75

0 0 1 1 0 1 0 1 0

1 0 1 1 0 1 0 1 0

– 500 T, 0 NT P=1.0

– 250 T, 250 NT P=0.5

Context (9 bits)

Context (9 bits)
Context extension

Context extension
Figure 3.2. The goal of context extension.

Figure 3.2 presents a suggestive example on how unbiased branch
contexts can be solved through their extension. We considered that a branch
context is unbiased if its polarization index (see relation (3.1)) is less than
0.95. The branch contexts with polarization greater than 0.95 are predictable
and will obtain relatively high prediction accuracies (around 95%). More
details are presented in paragraph 3.2.4 on a real example from the Stanford
Perm benchmark [Flo07].

In our experiments we concentrated only on benchmarks with a
percentage of unbiased branch context instances (obtained with relation
(3.3)), greater than a certain threshold (T=1%) considering that the potential
prediction accuracy improvement is not significant in the case of
benchmarks with percentage of unbiased context instances less than 1%. If
the percentage of unbiased branch contexts is 1%, if they would be solved,
the prediction accuracy would increase with maximum 1%. This maximum
can be reached when all discovered difficult predictable branches in this
stage are solved by the predictor.

01.0==
i

i

NB
NUB

T (3.3)

where NUBi is the total number of unbiased branch context instances on
benchmark i, and NBi is the number of dynamic branches on benchmark i
(therefore, the total number of branch context instances).

3.2. Experimental Results

All simulation results are reported on 1 billion dynamic instructions,
skipping the first 300 million instructions. We note with LH(p)-GH(q)-

28 A Systematic Approach to Predict Unbiased Branches

GHPC(r) branches unbiased on local history (LH) of p bits, global history
(GH) of q bits, and global history XOR-ed by branch address (GHPC) on r
bits. In the same manner, for all feature set extensions simulated in this
work, LH(p)-GH(q)-GHPC(r)→F(s) denotes that we measure the
polarization rate using feature F on s bits (if the feature is the local history,
global history or global history XOR-ed by branch address) and/or on s PCs
(in the case of path), evaluating only the branches unbiased for local history
of p bits, global history of q bits, and global history XOR-ed by branch
address on r bits.

3.2.1. Pattern-based Correlation

We started our study evaluating the branch contexts from SPEC2000
benchmarks [SPEC] on local branch history of 16 bits: LH(0)-GH(0)-
GHPC(0)→LH(16). In Table 3.1, for each benchmark we presented the
percentages of branch contexts with polarization indexes belonging to five
different intervals. The column Dynamic Branches contains the number of
all dynamic conditional branches for each benchmark. The column Static
Br. contains the number of static branches for each benchmark. For each
benchmark we generated using relation (3.1) a list of unbiased branch
contexts, having polarization less than 0.95. We considered that the branch
contexts with polarization greater than 0.95 are predictable and will obtain
relatively high prediction accuracies (around 0.95), therefore, in these cases
we considered that the potential improvement of the prediction accuracy is
quite low.

Polarization Rate (P) [%] SPEC
2000

Dynamic
Branches

Static
Br. [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9, 1.0]

Unbiased Context
Instances (P<0.95)

mcf 118321124 370 10.06 10.50 8.17 8.52 62.74 6812313 5.76%
parser 85382841 1777 6.67 5.90 3.68 4.56 79.19 17589658 20.60%
bzip 42591123 211 15.86 16.50 8.58 6.94 52.12 11252986 26.42%
gzip 71504537 136 15.08 15.63 11.03 9.50 48.76 27692102 38.73%
twolf 70616018 239 14.49 12.72 6.92 5.34 60.54 31763071 44.98%
gcc 90868660 17248 3.06 2.68 1.72 2.30 90.24 9809360 10.80%
Mean 79880717 3330 10.87 10.65 6.68 6.19 65.59 17486582 24.55%

Table 3.1. Polarization rates of branch contexts on local history of 16 bits.

The column Unbiased Context Instances contains – for each benchmark –
the number of unbiased context instances and respectively the percentage of
unbiased context instances reported to all context instances (dynamic

Finding Difficult-to-Predict Branches 29

branches). As it can be observed in Table 3.1, the relatively high
percentages of unbiased branches (at average 24.55%) show high
improvement potential from the predictability point of view.

We continue our work analyzing a global branch history of 16 bits
only on the local branch contexts that we already found unbiased for local
branch history (see Table 3.1 – last column). In other words, we used a
dynamic branch in our evaluations only if its 16 bit local context is one of
the unbiased local contexts: LH(16)-GH(0)-GHPC(0)→GH(16). In Table
3.2, for each benchmark we presented the percentages of branch contexts
with polarization indexes belonging to five different intervals. The column
Simulated Dynamic Branches contains the number of evaluated dynamic
branches (LH(16)-GH(0)-GHPC(0)) and respectively their percentages
reported to all dynamic branches. The column Simulated St. Br. represents
the number of static branches evaluated within each benchmark. For each
benchmark we generated using relation (3.1) a list of unbiased branch
contexts on local and global history of 16 bits (LH(16)-GH(16)-GHPC(0)),
having polarization less than 0.95. The last column contains the number of
unbiased branch context instances and respectively their percentages
reported to all dynamic branches. Analyzing comparatively Tables 3.1 and
3.2, we observe that the global branch history reduced the average
percentage of unbiased branch context instances from 24.55% to 17.48%.

Polarization Rate (P) [%]SPEC
2000

Simulated
Dynamic
Branches

Simu-
lated

St. Br.
[0.5,
0.6)

[0.6,
0.7)

[0.7,
0.8)

[0.8,
0.9)

[0.9,
1.0]

Unbiased Context
Instances (P<0.95)

mcf 6812313 5.76% 25 14.57 11.94 9.25 8.13 56.10 3887052 3.28%
parser 17589658 20.60% 707 6.87 6.98 5.71 6.18 74.26 11064817 12.95%
bzip 11252986 26.42% 83 19.34 16.62 14.36 13.80 35.88 9969701 23.40%
gzip 27692102 38.73% 62 8.98 10.09 9.01 10.88 61.04 20659305 28.89%
twolf 31763071 44.98% 132 8.46 7.43 6.39 9.89 67.83 22893014 32.41%
gcc 9809360 10.80% 4923 4.02 4.13 3.14 3.56 85.15 3563776 3.92%
Mean 17486582 24.55% 988 10.37 9.53 7.97 8.74 63.37 12006278 17.48%

Table 3.2. Polarization rates of branch contexts on global history of 16 bits
evaluating only the unbiased local branch contexts of 16 bits.

The next feature set we analyzed is the XOR between a global
branch history of 16 bits and the lower part of branch address (PC bits
18÷3): LH(16)-GH(16)-GHPC(0)→GHPC(16). We used again only the
branch contexts we found unbiased for the previous feature sets (local and
global branch history of 16 bits). In other words, we used a dynamic branch
in our evaluations only if its 16 bit local context is one of the unbiased local

30 A Systematic Approach to Predict Unbiased Branches

contexts (Table 3.1), and its 16 bit global context is one of the unbiased
global contexts (Table 3.2). In Table 3.3, for each benchmark we presented
the percentages of branch contexts with polarization indexes belonging to
five different intervals. For each benchmark we generated again using
relation (3.1), a list of unbiased branch contexts with polarization less than
0.95 (LH(16)-GH(16)-GHPC(16)).

Polarization Rate (P) [%]SPEC
2000

Simulated
Dynamic
Branches

Simu-
lated

St. Br.
[0.5,
0.6)

[0.6,
0.7)

[0.7,
0.8)

[0.8,
0.9)

[0.9,
1.0]

Unbiased Context
Instances (P<0.95)

mcf 3887069 3.28% 19 30.78 25.21 19.54 17.17 7.30 3887050 3.28%
parser 11065068 12.95% 504 23.84 24.27 19.87 21.56 10.46 11063791 12.95%
bzip 9969757 23.40% 76 28.45 24.43 21.12 20.30 5.70 9969678 23.40%
gzip 20659343 28.89% 51 20.34 22.85 20.43 24.66 11.72 20659290 28.89%
twolf 22893103 32.41% 112 21.11 18.53 15.93 24.69 19.75 22892985 32.41%
gcc 3565197 3.92% 2642 24.05 24.93 18.93 21.46 10.63 3561998 3.91%
Mean 12006590 17.48% 567 24.76 23.37 19.30 21.64 10.92 12005798 17.47%

Table 3.3. Polarization rates on the XOR between global history and branch
address on 16 bits evaluating only the unbiased local and global branch contexts of

16 bits.

The last column contains for each benchmark the number of unbiased
branch context instances and respectively their percentages reported to all
dynamic branches. The high percentages of unbiased branch context
instances in the case of bzip, gzip and twolf benchmarks represent a
potential improvement of prediction accuracy.

For the determined unbiased branch contexts we are analyzing now
if the taken and respectively not taken outcomes are grouped separately.
This is necessary, because if the branch outcomes are not shuffled they are
predictable using corresponding two-level adaptive predictors, but if these
outputs are shuffled the branches are not predictable. We used relation (3.2)
in order to determine the distribution indexes for each unpredictable branch
context per benchmark. We evaluated only the unbiased dynamic branches
obtained using all their contexts of 16 bits (LH(16)-GH(16)-GHPC(16)).
Table 3.4 shows for each benchmark the percentages of branch contexts
with distribution indexes belonging to five different intervals in the case of
local branch history. In the same way, Tables 3.5 and 3.6 present the
distribution indexes in the case of global history and respectively the XOR
between global history and branch address.
 Tables 3.4, 3.5 and 3.6 show that in the case of unbiased branch
contexts, the taken and respectively not taken outcomes are not grouped
separately, more, they are highly shuffled.

Finding Difficult-to-Predict Branches 31

Distribution Rate (D) [%] SPEC
2000

Simulated Dynamic
Branches

Simu-
lated

St. Br.
[0,
0.2)

[0.2,
0.4)

[0.4,
0.6)

[0.6,
0.8)

[0.8,
1.0]

mcf 3887069 3.28% 19 9.21 11.02 46.30 13.32 20.15
parser 11064250 12.95% 483 20.23 9.50 42.44 9.63 18.19
bzip 9969752 23.40% 75 6.78 6.45 44.00 16.80 25.98
gzip 20659339 28.89% 51 5.10 5.38 38.70 20.98 29.85
twolf 22893094 32.41% 110 14.63 5.81 43.42 16.71 19.43
gcc 3564489 3.91% 2553 39.07 9.11 33.32 6.00 12.50

Mean 12006332 17.47% 548 15.83 7.87 41.36 13.90 21.01

Table 3.4. Distribution rates on local history of 16 bits evaluating only the
branches that were unbiased on all their 16 bit contexts (on local history, global

history and respectively XOR of global history and branch address).

Distribution Rate (D) [%] SPEC
2000

Simulated Dynamic
Branches

Simu-
lated

St. Br.
[0,
0.2)

[0.2,
0.4)

[0.4,
0.6)

[0.6,
0.8)

[0.8,
1.0]

mcf 3887069 3.28% 19 0.27 4.30 37.75 34.38 23.31
parser 11064250 12.95% 483 6.92 14.62 36.63 19.33 22.50
bzip 9969752 23.40% 75 0.25 2.94 32.24 37.43 27.13
gzip 20659339 28.89% 51 0.26 2.18 26.45 35.19 35.91
twolf 22893094 32.41% 110 0.84 5.12 26.84 28.44 38.75
gcc 3564489 3.91% 2553 8.10 18.03 38.66 16.06 19.15
Mean 12006332 17.47% 548 2.77 7.86 33.09 28.47 27.79

Table 3.5. Distribution rates on global history of 16 bits evaluating only the
branches that have all their 16 bit contexts unbiased (on local history, global

history and respectively XOR of global history and branch address).

Distribution Rate (D) [%] SPEC
2000

Simulated Dynamic
Branches

Simu-
lated

St. Br.
[0,
0.2)

[0.2,
0.4)

[0.4,
0.6)

[0.6,
0.8)

[0.8,
1.0]

mcf 3887069 3.28% 19 0.27 4.30 37.75 34.38 23.31
parser 11064250 12.95% 483 6.92 14.62 36.63 19.33 22.50
bzip 9969752 23.40% 75 0.25 2.94 32.24 37.43 27.13
gzip 20659339 28.89% 51 0.26 2.18 26.45 35.19 35.91
twolf 22893094 32.41% 110 0.84 5.12 26.84 28.44 38.75
gcc 3564489 3.91% 2553 8.10 18.03 38.66 16.06 19.15
Mean 12006332 17.47% 548 2.77 7.86 33.09 28.47 27.79

Table 3.6. Distribution rates on the XOR between global history and branch
address on 16 bits evaluating only branches having all 16 bit contexts unbiased (on

local and global history and the XOR of global history and branch address).

32 A Systematic Approach to Predict Unbiased Branches

The percentage of unbiased branch contexts having highly shuffled
outcomes (with distribution index greater than 0.4) is 76.3% in the case of
local history of 16 bits (see Table 3.4), 89.37% in the case of global history
of 16 bits (see Table 3.5), and 89.37% in the case of global history XOR-ed
by branch address on 16 bits (see Table 3.6). We obtained the same
distribution indexes for both the global history and respectively the XOR
between global history and branch address (Tables 3.5 and 3.6).

A distribution index of 1.0 means the highest possible alternation
frequency (with taken or not taken periods of 1). A distribution index of 0.5
means again a high alternation, since, supposing a constant frequency, the
taken or not taken periods are only 2, lower than the predictors’ learning
times. In the same manner, periods of 3 introduce a distribution of about
0.25, and periods of 5 generate a distribution index of 0.15, therefore we
considered that if the distribution index is lower than 0.2 the taken and not
taken outcomes are not shuffled, and the branch’s behavior can be learned.

We continued our evaluations extending the lengths of feature sets
from 16 bits to 20, 24 and respectively 28 bits, our hypothesis being that the
longer feature sets will increase the polarization index and, therefore, the
prediction accuracy. We started with a local branch history of 20 bits (Table
3.7), evaluating again only the branch contexts we found unbiased for the
previous feature sets of 16 bits: LH(16)-GH(16)-GHPC(16)→LH(20).

Polarization Rate (P) [%]SPEC

2000
Simulated
Dynamic
Branches

Simu-
lated

St. Br.
[0.5,
0.6)

[0.6,
0.7)

[0.7,
0.8)

[0.8,
0.9)

[0.9,
1.0]

Unbiased Context
Instances (P<0.95)

mcf 3887050 3.28% 19 8.41 7.96 5.28 5.97 72.37 3147989 2.66%
parser 11063878 12.95% 476 8.50 6.70 3.87 4.44 76.49 7838166 9.18%
bzip 9969651 23.40% 75 8.93 4.69 2.10 2.17 82.11 6493881 15.24%
gzip 20659242 28.89% 51 9.98 7.47 4.55 4.84 73.16 17753722 24.82%
twolf 22892904 32.41% 110 12.79 10.91 5.17 3.93 67.20 17540719 24.83%
gcc 3563213 3.91% 2546 7.79 6.31 3.68 4.56 77.66 2061136 2.26%
Mean 12005990 17.47% 546 9.40 7.34 4.10 4.31 74.83 9139269 13.17%

Table 3.7. Polarization rates on local history of 20 bits evaluating only the
branches that have all their 16 bit contexts unbiased (on local history, global

history and respectively XOR of global history and branch address).

The column Polarization Rate from Table 3.7 presents the percentages of
branch contexts with polarization indexes belonging to five different
intervals. The last column of Table 3.7 shows for each benchmark the
number of unbiased dynamic branches (LH(20)-GH(16)-GHPC(16)), and
respectively their percentage reported to all dynamic branches.

Finding Difficult-to-Predict Branches 33

Table 3.8 shows the results obtained using a global branch history of
20 bits: LH(20)-GH(16)-GHPC(16)→GH(20). The last column of Table 3.8
shows the number of unbiased dynamic branches (LH(20)-GH(20)-
GHPC(16)) and their percentage reported to all dynamic branches.

Polarization Rate (P) [%]SPEC
2000

Simulated
Dynamic
Branches

Simu-
lated

St. Br.
[0.5,
0.6)

[0.6,
0.7)

[0.7,
0.8)

[0.8,
0.9)

[0.9,
1.0]

Unbiased Context
Instances (P<0.95)

mcf 3148005 2.66% 18 20.06 20.55 13.08 10.60 35.71 3057312 2.58%
parser 7838384 9.18% 446 15.44 14.61 10.83 11.04 48.09 7166404 8.39%
bzip 6493918 15.24% 74 15.86 17.02 12.45 12.43 42.24 6228047 14.62%
gzip 17753750 24.82% 45 15.32 16.89 15.88 17.75 34.16 17215762 24.07%
twolf 17540776 24.83% 103 13.96 12.79 11.63 17.61 44.00 16240443 22.99%
gcc 2062167 2.26% 2299 14.59 13.77 9.35 9.93 52.37 1767385 1.94%
Mean 9139500 13.17% 497 15.87 15.93 12.20 13.22 42.76 8612559 12.43%

Table 3.8. Polarization rates on global history of 20 bits evaluating only the
unbiased branches on local history of 20 bits, global history of 16 bits, and the

XOR of global history and branch address on 16 bits.

In the same manner, Table 3.9 shows the results obtained using a XOR of
20 bits between global history and branch address: LH(20)-GH(20)-
GHPC(16)→GHPC(20). The last column of Table 3.9 shows for each
benchmark the number and percentage of unbiased dynamic branches:
LH(20)-GH(20)-GHPC(20).

Polarization Rate (P) [%]SPEC

2000
Simulated
Dynamic
Branches

Simu-
lated

St. Br.
[0.5,
0.6)

[0.6,
0.7)

[0.7,
0.8)

[0.8,
0.9)

[0.9,
1.0]

Unbiased Context
Instances (P<0.95)

mcf 3057327 2.58% 18 30.53 31.28 19.91 16.14 2.13 3057309 2.58%
parser 7166723 8.39% 429 27.62 26.16 19.37 19.76 7.08 7166215 8.39%
bzip 6228107 14.62% 73 26.21 28.12 20.57 20.53 4.57 6228010 14.62%
gzip 17215799 24.07% 45 20.78 22.96 21.58 24.13 10.55 17215749 24.07%
twolf 16240535 22.99% 101 21.26 19.48 17.70 26.81 14.74 16240434 22.99%
gcc 1769008 1.94% 2019 28.28 26.84 18.17 19.29 7.41 1766800 1.94%
Mean 8612917 12.43% 447 25.78 25.80 19.55 21.11 7.74 8612420 12.43%

Table 3.9. Polarization rates on the XOR of 20 bits between global history and
branch address evaluating only the branches unbiased for local and global history
of 20 bits respectively the XOR of global history and branch address on 16 bits.

As it can be observed a considerable number of unbiased branches become
biased if the feature sets are extended from 16 bits to 20 bits. Extending the
feature set length from 16 bits to 20 bits, the percentage of unbiased
dynamic branches decreased at average from 17.47% (see Table 3.3) to

34 A Systematic Approach to Predict Unbiased Branches

12.43% (Table 3.9). Using the same simulation methodology, we extend the
feature sets to 24 bits.

Polarization Rate (P) [%]SPEC

2000
Simulated
Dynamic
Branches

Simu-
lated

St. Br.
[0.5,
0.6)

[0.6,
0.7)

[0.7,
0.8)

[0.8,
0.9)

[0.9,
1.0]

Unbiased Context
Instances (P<0.95)

mcf 3057318 2.58% 18 9.04 7.95 4.59 5.41 73.01 2632531 2.22%
parser 7166415 8.39% 424 10.88 8.16 4.19 4.44 72.34 5083585 5.95%
bzip 6228031 14.62% 73 8.41 4.71 2.46 2.84 81.59 4250654 9.98%
gzip 17215734 24.07% 45 9.20 6.19 3.64 4.19 76.78 13753938 19.23%
twolf 16240411 22.99% 101 10.14 5.40 2.21 1.95 80.31 12308193 17.42%
gcc 1768113 1.94% 1980 11.73 9.02 5.11 6.14 68.00 1227407 1.35%
Mean 8612670 12.43% 440 9.90 6.90 3.70 4.16 75.33 6542718 9.36%

Table 3.10. Polarization rates on local history of 24 bits only for branches that
were unbiased on all their 20 bit contexts (on local history, global history and

respectively XOR of global history and branch address).

Table 3.10 shows the results obtained using a local branch history of 24 bits:
LH(20)-GH(20)-GHPC(20)→LH(24). The last column of Table 3.10 shows
for each benchmark the number and percentage of unbiased dynamic
branches: LH(24)-GH(20)-GHPC(20).

Table 3.11 shows the results obtained using a global branch history
of 24 bits: LH(24)-GH(20)-GHPC(20)→GH(24). The last column of Table
3.11 shows the number of unbiased dynamic branches (LH(24)-GH(24)-
GHPC(20)) and their percentage reported to all dynamic branches.

Polarization Rate (P) [%]SPEC
2000

Simulated
Dynamic
Branches

Simu-
lated

St. Br.
[0.5,
0.6)

[0.6,
0.7)

[0.7,
0.8)

[0.8,
0.9)

[0.9,
1.0]

Unbiased Context
Instances (P<0.95)

mcf 2632542 2.22% 18 15.20 13.79 7.13 5.90 57.98 2568911 2.17%
parser 5083795 5.95% 414 18.82 16.61 10.90 10.41 43.25 4664394 5.46%
bzip 4250689 9.98% 73 12.10 11.31 7.12 7.60 61.87 3799893 8.92%
gzip 13753960 19.23% 44 18.43 18.17 15.37 16.36 31.67 13480788 18.85%
twolf 5459637 17.42% 93 16.99 14.90 10.91 13.88 43.32 5144339 7.28%
gcc 1228364 1.35% 1856 17.16 14.61 9.94 10.15 48.14 1097445 1.20%
Mean 5401498 9.36% 416 16.45 14.89 10.22 10.71 47.70 5125962 7.31%

Table 3.11. Polarization rates on global history of 24 bits evaluating only the
branches unbiased for local history of 24 bits, global history of 20 bits and

respectively XOR of global history and branch address on 20 bits.

Table 3.12 presents the results obtained using the XOR between global
branch history and branch address on 24 bits: LH(24)-GH(24)-

Finding Difficult-to-Predict Branches 35

GHPC(20)→GHPC(24). The last column of Table 3.12 shows for each
benchmark the number and percentage of unbiased dynamic branches:
LH(24)-GH(24)-GHPC(24). Extending the feature set length from 20 bits to
24 bits, the percentage of unbiased dynamic branches decreased at average
from 12.43% (see Table 3.9) to 7.31% (Table 3.12).

Polarization Rate (P) [%]SPEC

2000
Simulated
Dynamic
Branches

Simu-
lated

St. Br.
[0.5,
0.6)

[0.6,
0.7)

[0.7,
0.8)

[0.8,
0.9)

[0.9,
1.0]

Unbiased Context
Instances (P<0.95)

mcf 2568928 2.17% 18 35.55 32.24 16.67 13.79 1.75 2568910 2.17%
parser 4664693 5.46% 398 31.21 27.52 18.08 17.25 5.93 4664273 5.46%
bzip 3799936 8.92% 72 30.43 28.45 17.91 19.13 4.07 3799859 8.92%
gzip 13480825 18.85% 41 24.64 24.29 20.55 21.87 8.66 13480783 18.85%
twolf 5144419 7.28% 89 27.03 23.73 17.38 22.10 9.76 5144327 7.28%
gcc 1098795 1.20% 1668 30.73 26.27 17.87 18.39 6.75 1097009 1.20%
Mean 5126266 7.31% 381 29.93 27.08 18.07 18.75 6.15 5125860 7.31%

Table 3.12. Polarization rates on the XOR of 24 bits between global history and
branch address evaluating only the branches unbiased for local history of 24 bits,
global history of 24 bits and XOR of global history and branch address on 20 bits.

We extended again the feature sets to 28 bits. Table 3.13 shows the
results obtained using a local branch history of 28 bits: LH(24)-GH(24)-
GHPC(24)→LH(28). The last column of Table 3.13 shows for each
benchmark the number of unbiased dynamic branches (LH(28)-GH(24)-
GHPC(24)) and their percentage reported to all dynamic branches.

Polarization Rate (P) [%]SPEC
2000

Simulated
Dynamic
Branches

Simu-
lated

St. Br.
[0.5,
0.6)

[0.6,
0.7)

[0.7,
0.8)

[0.8,
0.9)

[0.9,
1.0]

Unbiased Context
Instances (P<0.95)

mcf 2568923 2.17% 18 10.62 8.64 4.69 5.35 70.69 2174101 1.83%
parser 4664502 5.46% 395 11.17 7.09 3.72 4.07 73.95 3301587 3.86%
bzip 3799904 8.92% 71 10.16 5.90 3.04 3.59 77.30 2728593 6.40%
gzip 13480777 18.85% 41 9.76 6.14 3.50 4.14 76.46 10691142 14.95%
twolf 5144325 7.28% 87 9.03 4.44 2.81 3.76 79.96 4208376 5.95%
gcc 1098269 1.20% 1644 13.68 10.29 5.68 6.76 63.59 774654 0.85%
Mean 5931686 8.54% 122 10.14 6.44 3.55 4.18 75.67 4620759 6.60%

Table 3.13. Polarization rates on local history of 28 bits only for branches that
were unbiased on all their 24 bit contexts (on local history, global history and

respectively XOR of global history and branch address).

As it can be observed, in the case of the gcc benchmark, extending the
feature set length to 28 bits, the percentage of the unbiased context instances

36 A Systematic Approach to Predict Unbiased Branches

is less than the threshold T of 1% (see relation (3.3)), and thus we eliminate
it from our next evaluations. We consider that the conditional branches from
the gcc benchmark are not difficult predictable using feature lengths of 28
bits. As a consequence the results obtained with the gcc benchmark are not
included in the average results from Table 3.13.

Polarization Rate (P) [%]SPEC
2000

Simulated
Dynamic
Branches

Simu-
lated

St. Br.
[0.5,
0.6)

[0.6,
0.7)

[0.7,
0.8)

[0.8,
0.9)

[0.9,
1.0]

Unbiased Context
Instances (P<0.95)

mcf 2174117 1.83% 18 15.41 11.53 6.18 5.29 61.60 2149108 1.81%
parser 3301768 3.86% 370 21.26 17.06 10.39 10.18 41.11 3041426 3.56%
bzip 2728627 6.40% 69 11.81 8.86 5.07 5.55 68.72 2280197 5.35%
gzip 10691161 14.95% 41 19.36 17.05 13.50 14.84 35.25 10405692 14.55%
twolf 4208418 5.95% 85 16.53 14.43 10.21 13.55 45.29 4007088 5.67%
Mean 4620818 6.60% 116 16.87 13.78 9.07 9.88 50.39 4376702 6.19%

Table 3.14. Polarization rates on global history of 28 bits evaluating only the
branches unbiased for local history of 28 bits, global history of 24 bits and

respectively the XOR of global history and branch address on 24 bits.

Table 3.14 presents the results obtained when we used a global branch
history of 28 bits: LH(28)-GH(24)-GHPC(24)→GH(28). The column
Unbiased Context Instances from Table 3.14 presents for each benchmark
the number and percentage of unbiased dynamic branches: LH(28)-GH(28)-
GHPC(24).

Finally, Table 3.15 shows the results obtained using the XOR of
global branch history and branch address on 28 bits: LH(28)-GH(28)-
GHPC(24)→GHPC(28). The last column of Table 3.15 shows for each
benchmark the number of unbiased dynamic branches (LH(28)-GH(28)-
GHPC(28)) and their percentage reported to all dynamic branches.

Polarization Rate (P) [%]SPEC

2000
Simulated
Dynamic
Branches

Simu-
lated

St. Br.
[0.5,
0.6)

[0.6,
0.7)

[0.7,
0.8)

[0.8,
0.9)

[0.9,
1.0]

Unbiased Context
Instances (P<0.95)

mcf 2149125 1.81% 18 39.26 29.37 15.73 13.46 2.17 2149107 1.81%
parser 3041691 3.56% 357 34.21 27.48 16.71 16.39 5.22 3041301 3.56%
bzip 2280240 5.35% 69 36.29 27.22 15.57 17.05 3.87 2280161 5.35%
gzip 10405726 14.55% 41 27.56 24.28 19.22 21.13 7.81 10405684 14.55%
twolf 4007152 5.67% 82 27.73 24.21 17.12 22.73 8.21 4007068 5.67%
Mean 4376787 6.19% 113 33.01 26.51 16.87 18.15 5.45 4376664 6.19%

Table 3.15. Polarization rates on the XOR of 28 bits between global history and
branch address evaluating only the branches unbiased for local and global history
of 28 bits respectively the XOR of global history and branch address on 24 bits.

Finding Difficult-to-Predict Branches 37

Extending the feature set length from 24 bits to 28 bits, the percentage of
unbiased dynamic branches decreased at average from 7.31% (see Table
3.12) to 6.19% (see Table 3.15). Despite of the feature set extension, the
number of unbiased dynamic branches remains still high (6.19%), and thus,
it is obvious that using longer feature sets is not sufficient.
 The global history solves at average 2.56% of the unbiased dynamic
branches not solved with local history (see Figure 3.3). The hashing
between global history and branch address (XOR) behaves just like the
global history, and it does not improve further the polarization rate. In
Figure 3.3 can be also observed that increasing the branch history, the
percentage of unbiased dynamic branches decreases, suggesting a
correlation between branches situated at a large distance in the dynamic
instruction stream. The results also show that the “ultimative predictibility
limit” of history context-based prediction is approximatively 94%,
considering unbiased branches as completely unpredictable. A conclusion
based on our simulation methodology is that 94% of dynamic branches can
be solved with prediction information of up to 28 bits (some of them are
solved with 16 bits, others with 20, 24 or 28 bits).

0

5

10

15

20

25

30

16 bits 20 bits 24 bits 28 bits

Feature Set Length

D
yn

am
ic

 U
np

ol
ar

iz
ed

 C
on

te
xt

s
[%

]

LH
GH

GH xor PC

Figure 3.3. Reduction of average percentages of unbiased context instances

(P<0.95) by extending the lengths of feature sets.

 In another work we have studied the polarization of branches but
using a little different simulation methodology [Oan06]. We evaluated local
history concatenated with global history. The simulation methodology is
presented in Figure 3.4.

38 A Systematic Approach to Predict Unbiased Branches

LHR
16 bits

GHR
16 bits

LHR
16 bits

GHR
20 bits

LHR
20 bits

GHR
24 bits

LHR
24 bits

GHR
28 bits

LHR
28 bits

GHR
32 bits

LHR
32 bits

Remaining
unbiased branches

Unbiased

Unbiased

Unbiased

Unbiased

Unbiased

Unbiased

LHR
16 bits

GHR
16 bits

LHR
16 bits

GHR
20 bits

LHR
20 bits

GHR
24 bits

LHR
24 bits

GHR
28 bits

LHR
28 bits

GHR
32 bits

LHR
32 bits

Remaining
unbiased branches

Unbiased

Unbiased

Unbiased

Unbiased

Unbiased

Unbiased

Figure 3.4. Identifying unbiased branches by using the local history concatenated

with the global history.

The evaluation results presented in Table 3.16 show that these longer
contexts, due to their better precision, have higher polarization index.
Comparing our results, it is obvious that a certain feature set LH(p)-GH(p)
from Table 3.16 is approximatively equivalent in terms of polarization rate
with feature set GH(p+4) from Tables 3.8, 3.11 and 3.14. In other words, the
same percentage of unbiased context instances is obtained for both LH(p)-
GH(p) and GH(p+4) feature sets, but the number of bits in the correlation
information is different: (p+p) bits of local and global history, and
respectively (p+4) bits of global history.

Benchmark LH(0)-GH(0)

->LH(16)-
GH(0)

LH(16)-
GH(0)
->LH(16)-
GH(16)

LH(16)-
GH(16)
->LH(20)-
GH(20)

LH(20)-
GH(20)
->LH(24)-
GH(24)

LH(24)-
GH(24)
->LH(28)-
GH(28)

LH(28)-
GH(28)
->LH(32)-
GH(32)

bzip 26.42% 12.83% 7.53% 4.70% 3.08% 2.10%
gzip 38.73% 24.58% 17.84% 12.67% 9.12% 6.16%
mcf 5.76% 3.09% 2.44% 2.09% 1.78% 1.49%
parser 20.61% 7.42% 4.77% 3.01% 1.98% 1.40%
twolf 44.98% 23.94% 12.79% 8.28% 5.70% 3.90%
gcc 10.85% 2.50% 1.41% 0.88% 0.58% 0.39%
Average 24.56% 12.39% 7.80% 6.15% 4.33% 3.01%

Table 3.16. The percentages of unbiased context instances, after each context
length extension, obtained by using only the local history concatenated with the

global history.

Finding Difficult-to-Predict Branches 39

Taking into account that increasing the prediction accuracy with 1%,
the IPC (instructions-per-cycle) is improved with more than 1% (it grows
non-linearly) [Yeh92], there are great chances to obtain considerably better
overall performances even if not all of the 6.19% difficult predictable
branches will be solved. Therefore, we consider that this 6.19% represents a
significant percentage of unbiased branch context instances, and in the same
time a good improvement potential in terms of prediction accuracy and IPC.
Focalising on these unbiased branches – in order to design some efficient
path-based predictors for them [Nair95, Vin99b] – the overall prediction
accuracy should increase with some percents, that would be quite
remarkable. The simulation results also lead to the conclusion that as higher
is the feature set length used in the prediction process, as higher is the
branch polarization index and hopefully the prediction accuracy (Figure
3.3). A certain large context (e.g. 100 bits) – due to its better precision – has
lower occurrence probability than a smaller one, and higher dispersion
capabilities (the dispersion grows exponentially). Thus, very large contexts
can significantly improve the branch polarization and the prediction
accuracy too. However, they are not always feasable for hardware
implementation. The question is: what feature set length is really feasable
for hardware implementation, and more important, in this case, which is the
solution regarding the unbiased branches? In our opinion, as we’ll further
show, a feasable solution in this case could be given by path-predictors.

3.2.2. Path-based Correlation

 The path information could be a solution for relatively short history
contexts (low correlations). Our hypothesis is that short contexts used
together with path information should replace significantly longer contexts,
providing the same prediction accuracy. A common criticism for most of the
present two-level adaptive branch prediction schemes consists in the fact
that they used insufficient global correlation information [Vin99b]. There
are situations when a certain static branch, in the same global history
context pattern, has different behaviors (taken/not taken), and therefore the
branch in that context is unbiased. If each bit belonging to the global history
will be associated during the prediction process with its corresponding PC,
the context of the current branch becomes more precisely, and therefore its
prediction accuracy could be better. Our next goal is to extend the
correlation information with the path, according to the above idea [Vin99b].
Extending the correlation information in this way, suggests that at different

40 A Systematic Approach to Predict Unbiased Branches

occurrences of a certain static branch with the same global history context,
the path contexts can be different.
 We started our evaluations regarding the path, studying the gain
obtained by introducing paths of different lengths. The analyzed feature
consists of a global branch history of 16 bits and the last p PCs. We applied
this feature only to dynamic branches that we already found unbiased
(P<0.95) for local and global history of 16 bits and respectively global
history XOR-ed by branch address on 16 bits.

Benchmark LH(16)-

GH(16)-
GHPC(16)

LH(16)-GH(16)-
GHPC(16)
->PATH(1)

LH(16)-GH(16)-
GHPC(16)
->PATH(16)

LH(16)-GH(16)-
GHPC(16)
->PATH(20)

LH(16)-GH(16)-
GHPC(16)
->LH(20)

bzip 23.40% 23.35% 22.16% 20.38% 15.24%
gzip 28.89% 28.88% 28.17% 27.51% 24.82%
mcf 3.28% 3.28% 3.28% 3.20% 2.66%
parser 12.95% 12.89% 12.01% 10.95% 9.18%
twolf 32.41% 32.41% 31.46% 27.10% 24.83%
gcc 3.91% 3.91% 3.56% 3.02% 2.26%
Average 17.47% 17.45% 16.77% 15.36% 13.17%
Gain 0.02% 0.70% 2.11% 4.30%

Table 3.17. The gain introduced by the path of different lengths (1, 16, 20 PCs)
versus the gain introduced by extended local history (20 bits).

Column LH(16)-GH(16)-GHPC(16) from Table 3.17, presents the
percentage of unbiased contexts for each benchmark. Columns LH(16)-
GH(16)-GHPC(16)→PATH(1), LH(16)-GH(16)-GHPC(16)→PATH(16)
and LH(16)-GH(16)-GHPC(16)→PATH(20) presents the percentages of
unbiased context instances obtained using a global history of 16 bits and a
path of 1, 16 and respectively 20 PCs. The last column presents the
percentages of unbiased context instances extending the local history to 20
bits (without path). For each feature is presented the gain opposite to the
first column average. It can be observed that a path of 1 introduces a not
significant gain of 0.2%. Even a path of 20 introduces a gain of only 2.11%
related to the more significant gain of 4.30% introduced by an extended
local branch history of 20 bits. The results show (Table 3.17) that the path is
useful only in the case of short contexts. Thus, a branch history of 16 bits
compresses and approximates well the path information. In other words, a
branch history of 16 bits spreads well the different paths that lead to a
certain dynamic branch.
 We continue our work evaluating – on all branches (non-iterative
simulation) – the number of unbiased context instances (P<0.95) using as

Finding Difficult-to-Predict Branches 41

prediction information paths of different lengths (p PCs) together with
global histories of the same lengths (p bits).

Bench. p=1 p=4 p=8 p=12 p=16 p=20 p=24
bzip 58.54% 39.00% 37.24% 35.08% 32.41% 31.29% 28.01%
gzip 49.85% 45.93% 43.58% 35.67% 34.10% 33.31% 33.02%
mcf 27.85% 21.30% 6.38% 5.89% 6.35% 5.58% 5.20%
parser 57.75% 44.64% 36.37% 30.63% 27.25% 23.00% 20.03%
twolf 67.49% 59.07% 51.28% 43.51% 37.12% 31.47% 28.47%
gcc 34.17% 26.34% 17.65% 12.61% 9.51% 7.85% 6.64%
Average 49.28% 39.38% 32.08% 27.23% 24.46% 22.08% 20.23%

Table 3.18. The percentages of unbiased context instances using as context only
the global history of p bits.

Bench. p=1 p=4 p=8 p=12 p=16 p=20 p=24
bzip 38.99% 36.93% 34.41% 32.16% 30.15% 27.52% 23.90%
gzip 48.53% 44.81% 42.20% 34.45% 33.21% 32.73% 32.31%
mcf 26.01% 20.98% 6.23% 5.85% 6.48% 5.57% 5.19%
parser 48.42% 39.50% 32.13% 27.48% 24.66% 20.82% 18.65%
twolf 62.65% 55.68% 49.47% 42.60% 35.81% 30.66% 27.88%
gcc 28.51% 20.42% 13.84% 10.53% 8.44% 7.12% 6.14%
Average 42.19% 36.39% 29.71% 25.51% 23.13% 20.74% 19.01%

Table 3.19. The percentages of unbiased context instances using as feature the
global history of p bits together with the path of p PCs.

The results are presented in Table 3.19, and in Figure 3.5 they are compared
with the results obtained using only global history (see Table 3.18). In the
case of the ‘mcf’ benchmark we obtained higher percentage of unbiased
context instances when we extended the correlation information (Table
3.19) from 12 bits of global history and 12 PCs (p=12) to 16 bits of global
history and 16 PCs (p=16). This growth is possible because a certain biased
context (P≥0.95), through extension is splitted into more subcontexts, and
some of these longer contexts can be unbiased (P<0.95), thus increasing the
number of unbiased branches. Again, the results obtained with long global
history patterns (contexts) are closer to those obtained with path patterns of
the same lengths, meaning that long global history (p bits) approximates
very well the longer path information (p PCs).
 As it can be observed in Figure 3.5, an important gain is obtained
through path in the case of short contexts (p<16). A branch history of more
than 12 bits, compresses well the path information, and therefore, in these
cases, the gain introduced by the path is not significant.

42 A Systematic Approach to Predict Unbiased Branches

15.00%
20.00%
25.00%
30.00%
35.00%
40.00%
45.00%
50.00%
55.00%

p=1 p=4 p=8 p=12 p=16 p=20 p=24

Context Length

U
nb

ia
se

d
C

on
te

xt
 In

st
an

ce
s

GH (p bits)

GH (p bits) + PATH (p
PCs)

Figure 3.5. The gain introduced by the path for different context lengths –

SPEC2000 benchmarks.

Desmet shows in her PhD thesis [Des06] that complete path (all
branches) is more efficient than simple path (only conditional branches)
from the entropy point of view. This is in contradiction with our results
presented in Table 3.20, where we compared these types of path from the
unbiased branch percentage point of view. This contradiction can be
justified (?) by observing the following differences between our
measurements:

• Desmet measured per branch entropy and presented the
average entropy, while we measured per branch-context
polarization and presented the average percentage of branch
contexts having polarization less than 0.95;

• Desmet’s path consists in the PCs corresponding to the target
instructions (as Nair did), while our path consists in the PCs
of branches;

• Desmet uses short histories (p=1, 2, 5 PCs), while our
evaluations were generated on a considerable larger interval
(p=1, 4, 8, …, 24 PCs).

As we explain below, paradoxically, the simple path is more rich in
information than complete path (for the same number of PCs), justifying our
results presented in Table 3.20. Let’s consider the following sequence of
instructions:

... bne1 ... bne2 ... jr ... bne3 ... bne4 ... bne5=?

Finding Difficult-to-Predict Branches 43

If we use a path history of 4 PCs (p=4), then:

• simple path = bne1, bne2, bne3, bne4;
• complete path = bne2, jr, bne3, bne4.

The unconditional branch jr brings less information, because it is
always taken, and therefore, between bne2 and bne3 through jr only one
path is possible, while through conditional branches two paths are possible.
Thus, the path consisting exclusively in conditional branches is better than
complete path (see Table 3.20).

Context p=1 p=4 p=8 p=12 p=16 p=20 p=24
GH (p bits) 49.28 39.38 32.08 27.23 24.46 22.08 20.23
GH (p bits) +
FullTargetPath (p PCs) 46.74 37.23 30.72 26.50 23.89 21.58 19.88
GH (p bits) +
FullPath (p PCs) 43.21 37.03 30.49 26.41 23.86 21.56 19.86
GH (p bits) +
CondTargetPath (p PCs) 45.13 36.41 29.76 25.56 23.18 20.77 19.09
GH (p bits) +
CondPath (p PCs) 42.19 36.39 29.71 25.51 23.13 20.74 19.01

Table 3.20. Percentages of unbiased branches on the SPEC2000 benchmarks [%].

We also compared the path consisting in PCs of branches with the path
consisting in PCs of target instructions. The path of branch PCs is slightly
better, however the difference is unsignificant (see Table 3.20).

Further, we present some results obtained applying the same
methodology on Branch Prediction World Championship benchmarks –
proposed by Intel [CBP, Loh05a]. We continue to evaluate – on all branches
using the non-iterative simulation – paths of different lengths (p PCs) used
together with global histories of the same lengths (p bits). The results are
presented in Table 3.22, and in Figure 3.6 they are compared with the
results obtained using only global history (see Table 3.21).

As it can be observed from Tables 3.21, 3.22 and from Figure 3.6, the
results produced (unbiased context instances ratio) by the Intel benchmarks
have the same profile like that obtained on the SPEC2000 benchmarks.
Actually, rich contexts (long patterns) reduce almost to zero the advantage
introduced by using the path information.

44 A Systematic Approach to Predict Unbiased Branches

Benchmark p=1 p=4 p=8 p=12 p=16 p=20 p=24 p=28 p=32
dist-fp-1 25.70 21.11 18.45 16.38 14.61 12.64 10.62 9.74 9.46
dist-fp-2 20.47 9.11 8.48 5.18 5.19 5.43 5.36 5.20 5.32
dist-fp-3 3.04 1.82 0.95 0.18 0.00 0.00 0.00 0.00 0.00
dist-fp-4 11.41 8.96 4.58 3.92 3.59 3.00 2.27 1.73 1.37
dist-fp-5 68.91 30.11 16.81 6.09 5.19 5.19 4.46 3.72 3.72
dist-int-1 47.98 40.00 28.97 24.93 20.52 16.39 14.01 10.80 9.38
dist-int-2 55.98 48.24 39.61 32.81 27.46 22.97 19.54 17.19 15.11
dist-int-3 66.26 55.74 47.23 38.35 31.21 26.20 22.74 20.10 17.56
dist-int-4 45.31 42.29 29.53 21.11 16.50 13.77 11.18 9.92 8.89
dist-int-5 2.50 1.48 1.10 0.91 0.78 0.72 0.67 0.67 0.66
dist-mm-1 72.68 66.29 56.09 52.16 47.16 44.32 40.95 37.14 33.04
dist-mm-2 39.43 37.51 33.48 30.65 28.65 26.75 24.79 22.56 20.20
dist-mm-3 19.33 15.62 13.43 11.54 10.20 6.80 6.17 5.42 5.20
dist-mm-4 8.41 6.11 6.86 5.91 5.01 4.24 3.13 3.08 2.98
dist-mm-5 38.16 29.02 22.08 16.97 14.53 12.17 10.64 9.22 7.91
dist-serv-1 16.63 11.60 7.92 6.01 5.21 4.03 3.17 2.75 2.57
dist-serv-2 15.59 11.08 7.66 5.91 4.81 3.76 3.11 2.72 2.44
dist-serv-3 29.87 25.68 20.52 16.84 14.06 12.37 9.02 8.26 7.47
dist-serv-4 15.53 11.04 8.00 7.06 5.86 5.17 4.63 4.22 3.93
dist-serv-5 15.94 11.27 7.95 7.21 6.17 5.38 5.08 4.55 4.15
Average 30.96 24.20 18.99 15.51 13.33 11.56 10.08 8.95 8.07

Table 3.21. The percentages of unbiased context instances using as context only
the global history of p bits – Intel benchmarks [%].

Benchmark p=1 p=4 p=8 p=12 p=16 p=20 p=24 p=28 p=32
dist-fp-1 25.72 20.97 17.44 15.56 13.11 11.54 10.03 9.16 8.93
dist-fp-2 20.46 8.92 8.21 5.32 5.33 5.58 5.52 5.41 5.27
dist-fp-3 2.77 1.73 0.86 0.00 0.00 0.00 0.00 0.00 0.00
dist-fp-4 10.86 8.95 4.45 3.78 3.59 2.99 2.26 1.73 1.36
dist-fp-5 65.40 28.47 15.91 5.56 5.19 4.46 3.72 3.72 3.72
dist-int-1 44.02 32.67 26.51 23.05 18.05 15.16 12.40 10.28 8.63
dist-int-2 52.98 42.77 34.33 28.62 24.01 20.79 18.07 16.03 14.25
dist-int-3 64.24 55.42 46.82 38.04 31.10 26.15 22.56 20.00 17.51
dist-int-4 43.98 38.08 26.22 20.29 15.74 12.88 10.87 9.78 8.84
dist-int-5 2.27 1.22 0.93 0.82 0.75 0.71 0.66 0.66 0.65
dist-mm-1 71.98 60.26 50.31 48.23 44.58 41.28 37.59 33.59 29.38
dist-mm-2 36.70 35.11 31.19 29.01 27.52 26.09 24.00 21.65 19.18
dist-mm-3 18.21 14.57 13.09 11.42 9.83 6.76 6.13 5.41 5.20
dist-mm-4 8.33 5.86 6.86 5.90 5.00 4.21 3.12 3.08 2.98
dist-mm-5 35.82 26.83 19.60 15.60 13.74 11.72 10.24 8.85 7.66
dist-serv-1 14.71 9.12 6.57 5.08 4.32 3.37 2.98 2.52 2.19
dist-serv-2 13.85 8.79 6.38 4.74 3.79 3.29 2.75 2.48 2.17
dist-serv-3 27.88 20.43 15.28 14.02 12.50 11.45 8.36 7.61 6.94
dist-serv-4 13.77 9.03 6.88 6.16 5.43 4.82 4.51 4.08 3.74
dist-serv-5 14.16 9.42 6.77 6.47 5.74 5.16 4.93 4.38 3.91
Average 29.41 21.93 17.23 14.38 12.46 10.92 9.53 8.52 7.63

Table 3.22. The ratio of unbiased context instances using as features the global
history of p bits together with the path of p PCs – Intel benchmarks.

Finding Difficult-to-Predict Branches 45

18.99%

17.23%

5%

10%

15%

20%

25%

30%

35%

p=1 p=4 p=8 p=12 p=16 p=20 p=24 p=28 p=32

Context Length

U
nb

ia
se

d
C

on
te

xt
 In

st
an

ce
s

[%
]

GH (p bits)

GH (p bits) + PATH (p PCs)

Figure 3.6. The gain introduced by the path for different context lengths – Intel

benchmarks.

The main difference observed, analyzing the Figures 3.5 and 3.6, consists in
the different values of these ratios (much bigger on SPEC benchmarks) –
due to their different characteristics and functions [Loh05a]. However, it
must mentioned that while SPEC benchmarks were simulated on 1 billion
dynamic instructions the Intel benchmarks were entirely simulated, but the
total number of dynamic instructions is lower (under 30 million).

Summarizing the statistics reported on the SPEC2000 benchmarks,
546 static branches generate 77,683,129 dynamic instances at average
(142,120 instances / static branch). Focalizing now on those detected
unbiased (with LH=28 bits, GH=28 bits, and GH XOR PC=28 bits), 113
static branches generate 4,376,664 dynamic instances at average (38,731
instances / static branch). Therefore the unbiased branches are generated by
a few static branches having many dynamic instances. As a consequence,
taking into account the enormous number of dynamic unbiased branches per
a static branch, an adequate predictor has plenty of time to learn its
behavior. The real problem is to find the right prediction information that
changes such unbiased branches into biased ones.

3.2.3. An Analytical Model

High prediction accuracy is vital especially in the case of multiple
instruction issue processors. Further, we assume the analytical model

46 A Systematic Approach to Predict Unbiased Branches

proposed in [Cha94, Vin07], a superscalar processor that ignores stalls like
cache misses and bus conflicts focalizing only about the penalty introduced
by branch missprediction. Considering Branch Penalty (BP) as the average
number of wasted cycles due to a branch missprediction for each dynamic
instruction, it can be written the relation:

BP= C·(1-Ap)·b·IR [wasted clock / instruction] (3.4)

Where we denoted:

C = number of penalty cycles wasted due to a branch missprediction;
Ap = prediction accuracy;
b = the ratio of branches (the number of branches reported to the total

number of instructions);
IR = the average number of instructions that are executed per cycle

(the superscalar factor of architecture; >1).

Following, we computed how many cycles take the execution of each

instruction for a real superscalar processor that includes a branch predictor:

CPIreal = CPIideal + BP [clock cycle / instruction] (3.5)

Where:

CPIideal = represents the average number of cycles per instruction
considering a perfect branch prediction (Ap=100% ⇒
BP=0). It is obvious that CPIideal < 1.

CPIreal = represents the average number of cycles per instruction
considering a real branch prediction (Ap<100% ⇒ BP>0 ⇒
CPIreal > CPIideal).

Therefore, the real processing rate (the average number of instructions
executed per cycle) results immediately from the following formula:

IRreal =
BPCPI

1
CPI

1

idealreal +
= [instruction / clock cycle] (3.6)

Finding Difficult-to-Predict Branches 47

The relation (3.6) proves the non-linear correlation between
processing rate (IR) and prediction accuracy (Ap). With these metrics, we
adapted the model to our results obtained in Chapter 3. Further, we use the
following notations:

x = the ratio of biased context instances;
1 - x = the ratio of unbiased context instances.

In our simulations presented in [Gel06] we obtained using the gshare

predictor [McFar93] the global prediction accuracy Apglobal = 93.60%
(prediction applied to all branches) and respectively the accuracy of
unbiased branch prediction Apunbiased = 72.2% (only unbiased branches were
predicted). Since Apglobal represents a weighted mean among predictions
accuracies applied both to bias and unbiased branches, it can be determined
the biased prediction accuracy Apbiased.

Apglobal = X * Apbiased + (1-x) * Apunbiased (3.7)

For previous example, 0.936 = 0.8253*Abiased + 0.1747*0.722, resulting that
Apbiased = 0.9813.

Obviously, predicting the unbiased branches with a more powerful
branch predictor having, to say, 95% prediction accuracy, determines a gain
proportional with ratio of unbiased context instances: Accuracy_gain
=(0.95-0.722)*(1-x). More than that, this accuracy gain involves a
processing rate speed-up according to (3.4) and (3.6). This gain justifies the
importance and the necessity of finding and solving the difficult predictable
branches. However, finding predictor that obtains so high prediction
accuracy is beyond the scope of this paper.

Therefore, further we determined how much is influenced the branch
penalty (BP) by the increasing of context length and what is the speed-up in
these conditions. For this, we softly modified Chang’s model [Cha94] by
substituting Ap with our Apglobal, according to relation (3.7). Thus, the
penalty introduced for missprediction of biased branches is the term (1-
Apbiased)*x, respectively for considered wrong prediction of all unbiased
branches (Apunbiased=0) is the term (1-x).

Model proposed by

Chang
Our modified model

BP= C·(1-Ap)·b·IR BP=C·b·IR·[1– x·Apbiased] (3.8)

48 A Systematic Approach to Predict Unbiased Branches

Figure 3.3 shows a decreasing of unbiased branches (1-x) by
extending the context length that leads to a reduction of branch penalty (BP)
according to (3.8), and implicitly to a greater IR according to (3.6). It can be
written:

Context (Features Set) Length => x => BP => IR => ∃ Relative
Speed-up>0.

Next, we computed the IR relative speed-up, varying the context length.

Starting from the well known metric Speed-up 1
)16(
)(
≥=

IR
LIR , where L is the

feature’s length, L ∈ {20, 24, and 28}, we obtained the relative speed-up:

Relative Speed-up 0
)16(

)16()(
≥

−
=

IR
IRLIR (3.9)

Figure 3.7 illustrates the IR speed-up obtained extending the context.

The baseline processor model has an IRideal of 4 [instruction / clock cycle]
and incorporates a branch predictor with 98.13% prediction accuracy for
biased branches. The considered number of penalty cycles wasted due to a
branch missprediction in our model is 7. The ratio of simulated branches
(the number of simulated branches reported to the total number of simulated
instructions) is b=8% (see Table 3.1).

Relative IR Speed-up extending the context

19.61

49.35
57.94

0

10

20

30

40

50

60

70

20 24 28
Context Length

R
el

at
iv

e
Sp

ee
d-

up
 [%

]

Relative IR Speed-up
[%] over the IR obtained
having context length of
16 bits

Figure 3.7. The IR relative speed-up obtained growing the context length.

Finding Difficult-to-Predict Branches 49

Figure 3.7 illustrates not only the necessity of a greater number of prediction
features to improve the processor performance, but also the necessity of new
performing branch predictors that can consider a larger amount of
information in making predictions (but whose size does not scale
exponentially with the length of the input feature set).

3.2.4. An Example Regarding Branch Prediction Contexts
Influence

In this section we analyze the contexts used by present day branch

predictors (global and local histories respectively path information) from the
point of view of their limits in predicting unbiased branches. The main idea
is: in a perfect dynamic context all branch instances should have the same
outcome. If the outcome is not the same a first solution might consists in
extending the context information. After we varied the context length we
observed that some dynamic contexts remained unpredictable despite of
their length.

Related to the first part of our investigation – identifying the
difficult-to-predict branches and quantifying them on testing programs, we
used the traces obtained based on the eight C Stanford integer benchmarks,
designed by Professor John Hennessy (Stanford University), to be
computationally intensive and representative of non-numeric code while at
the same time being compact. All these benchmarks were compiled by the
HSA gnu C compiler, which targets the HSA (Hatfield Superscalar
Architecture) instruction set. A dedicated HSA simulator [Ste97] that
generates the corresponding traces simulated the resulted HSA object code.
These helpful tools were developed at the University of Hertfordshire,
Research Group of Computer Architecture, UK. The average instruction
number is about 273.000 and the average percentage of branch instructions
is about 18%, with about 76% of them being taken. Derived from HSA
traces, special traces were obtained, containing exclusively all the processed
branches. Each branch belonging to these modified HSA traces is stored in
the following format: branch's type, the address of the branch (PC –
program counter) and its target address. Some of these benchmarks are well
known as very difficult to be predicted. For example, as Mudge et al. proved
very clearly [Mud96], 75% accuracy could be an ultimate limit on "quick-
sort" benchmark.

Following our aims, we developed an original dedicated trace-driven
simulator that uses the above-mentioned traces [Rad07]. The most important
input parameters for this simulator are the local/global history length (HRl

50 A Systematic Approach to Predict Unbiased Branches

bits (l) / HRg bits (k)), number of entries in prediction table, the type of
predictor, the simulated benchmark. As outputs, the simulator generates
prediction accuracy, number of difficult-to-predict branches, and other
useful statistics. Further, we present partially the C and assembly code of
Stanford Perm benchmark that generates a suite of permutations. We detect
unbiased branches and we focused on two of the most important branch
instructions (having PC=35 and PC=58 after compiling process).

Permute (int n){
 int k;
 pctr = pctr+1;
 if(n != 1) { # the first branch instruction analyzed (PC=35)
 Permute(n-1);
 for(k = n-1; k >= 1; k--){ # the second branch instruction analyzed (PC=58)
 Swap(&permarray[n], &permarray[k]);
 Permute(n-1);
 Swap(&permarray[n], &permarray[k]);
 };
 }
}

_Permute:
 SUB SP, SP, #128
 ST 0(SP), RA
 ST 8(SP), R17
 ST 12(SP), R18
 ST 16(SP), R19
 ST 20(SP), R20
 MOV R20, R5
 LD R13, _pctr
 ADD R13, R13, #1
 ST _pctr, R13
 EQ B1, R20, #1
 BT B1, L8 (#0) # after compiling process this branch has the address 35

(PC=35)
 ADD R17, R20, #-1
 MOV R5, R17
 BSR RA, _Permute (#0)
 MOV R18, R17
 LES B1, R18, #0
 BT B1, L8 (#0)
 ASL R13, R20, #2
 MOV R7, #_permarray
 ADD R19, R13, R7
 ASL R13, R18, #2
 ADD R17, R13, R7

Finding Difficult-to-Predict Branches 51

L12:
 MOV R5, R19
 MOV R6, R17
 BSR RA, _Swap (#0)
 ADD R5, R20, #-1
 BSR RA, _Permute (#0)
 MOV R5, R19
 MOV R6, R17
 BSR RA, _Swap (#0)
 ADD R17, R17, #-4
 ADD R18, R18, #-1
 GTS B1, R18, #0
 BT B1, L12 (#0) # after compiling process this branch has the address 58

(PC=58)

In the following simulations [Flo07] the settled parameters are: Path = not
selected, Unbiased polarization degree = 0.95, HRl and HRg being the local
and global history. We define polarization index (bias) of a certain branch
context as:

)
NTT

NT ,
NTT

Tmax(bias
++

= (3.9)

where T and NT represent number of “taken” respective “not taken” branch
instances corresponding to that certain context.

1. Parameters: HRl = not selected, HRg on 3 bits, => Unbiased contexts: 25.0[%]
From the unbiased branches list we selected just two branch instructions in two global
contexts:
PC: 35 HRg: 101 T: 2520 NT: 1100 Bias: 0.696
PC: 58 HRg: 111 T: 1419 NT: 3620 Bias: 0.718
2. Parameters: HRl = not selected, HRg on 4 bits, => Unbiased contexts: 17.813[%]
PC: 35 HRg: 0101 T: 840 NT: 260 Bias: 0.763
PC: 35 HRg: 1101 T: 1680 NT: 840 Bias: 0.667
PC: 58 HRg: 0111 T: 1419 NT: 1100 Bias: 0.563
PC: 58 HRg: 1111 T: 0 NT: 2520 Bias: 1.000 => The branch with the address PC: 58
in context HRg: 1111 became fully biased. Practically it doesn’t appear in the unbiased
branch list.
3. Parameters: HRl on 1 bit, HRg on 4 bits, => Unbiased contexts: 17.813[%]
PC: 35 HRg: 0101 HRl: 0 T: 840 NT: 260 Bias: 0.763
PC: 35 HRg: 0101 HRl: 1 – this context doesn’t occur
PC: 35 HRg: 1101 HRl: 0 T: 1680 NT: 840 Bias: 0.667
PC: 35 HRg: 1101 HRl: 1 – this context doesn’t occur
PC: 58 HRg: 0111 HRl: 0 T: 1419 NT: 1100 Bias: 0.563
PC: 58 HRg: 0111 HRl: 1 – this context doesn’t occur

52 A Systematic Approach to Predict Unbiased Branches

4. Parameters: HRl on 2 bits, HRg on 4 bits, => Unbiased contexts: 9.673[%]
PC: 35 HRg: 0101 HRl: 00 T: 840 NT: 260 Bias: 0.763
PC: 35 HRg: 0101 HRl: 10 – this context doesn’t occur
PC: 35 HRg: 1101 HRl: 00 – this context doesn’t occur
PC: 35 HRg: 1101 HRl: 10 T: 1680 NT: 840 Bias: 0.667
PC: 58 HRg: 0111 HRl: 00 T: 1419 NT: 260 Bias: 0.845
PC: 58 HRg: 0111 HRl: 10 T: 0 NT: 840 Bias: 1.000=> The branch with the address
PC: 58 in context HRg: 0111 and HRl: 10 became fully biased. Practically it doesn’t
appear in the unbiased branch list.
…

5. Parameters: HRl on 2 bits, HRg on 7 bits, => Unbiased contexts: 9.668[%]
PC: 58 HRg: 1110111 HRl: 00 T: 1419 NT: 260 Bias: 0.845
6. Parameters: HRl on 2 bits, HRg on 8 bits, => Unbiased contexts: 8.134[%]
PC: 58 HRg: 01110111 HRl: 00 T: 579 NT: 260 Bias: 0.690
PC: 58 HRg: 11110111 HRl: 00 T: 840 NT: 0 Bias: 1.000=> The branch with the
address PC: 58 in context HRg: 11110111 and HRl: 00 became fully biased.
Practically it doesn’t appear in the unbiased branch list.
Conclusion: As it can be observed, increasing the context length, some branches in
certain contexts became fully biased, but a great percentage still remains unbiased.

Comparing the previous results it can be observed that as or richer

the context became, as smaller the unbiased branches percentage became.
From the 1st case to 2nd one, the unbiased branches percentages decrease
with 7.187% and it can be observed how the two unbiased branches, in
small contexts, are still unsolved. However, the branch with the address PC:
58 became fully biased in context HRg: 1111 decreasing the number of
unbiased branches with 2520. Practically it does not appear in the unbiased
branch list. In the 3rd case (adding one bit of local history) the unbiased
branches percentage remains unchanged. In the 4th local history is set on 2
bits and much more contexts became biased (the unbiased branches
percentage decreases with 8.14%). Although, there are some contexts that
remain unbiased (see above: PC: 35 HRg: x101 HRl: x0 – where x could be
0 or 1).

Analyzing the code sequence it can be observed that to reach
conditional branch 58, the previously 3 branches are every time Taken
(return from permute function, call of swap function and return – not
necessarily correlated with the branch 58). One reason for the larger
percentage of unbiased branches refers to the fact that the branches within
the global history length may not have correlation with the current branch,
or the relevant history might be too far away. If the context would permit it
could be seen a correlation between branches situated at a large distance in
the dynamic instruction stream. Recurrence and function calls hide some
branches that are really correlated with the analyzed one. Also, the local

Finding Difficult-to-Predict Branches 53

correlation reduces the noise included in global history. Similar examples
we found in tower benchmark that solves the Hanoi towers problem.

The insufficiency of global correlation information is remarked also
in the case of programs or data structures, which produce a variable number
of history bits as the data changes (data correlation). This occurs in the link
lists or trees cases where the address of an element is tested (usually
comparison with 0) and then a recurrent call of the same function is
generated to test the next element in the tree (left or right sub-tree). The
same situation does occure in the hash table cases having link lists to solve
the collisions. A possible solution could be to use data values or structural
information to keep the predictor more synchronized with data. We tried
such an approach in [Gel07b].

4. Predicting Unbiased Branches

 This section presents some important present-day branch predictors
and, respectively, some proposed condition-history-based branch predictors,
all of them being used to evaluate, in terms of prediction accuracy, the
unbiased branches identified in [Gel06, Vin06].

4.1. The Perceptron-Based Branch Predictor

Jiménez and Lin [Jim01] proposed a two-level scheme that uses fast
single-layer perceptrons instead of the commonly used two-bit saturating
counters. The branch address is hashed to select the perceptron, which is
used to generate a prediction based on global branch history. In [Jim02] the
authors developed a perceptron-based predictor that uses both local and
global branch history in the prediction process. Figure 4.1 presents the
architecture of the perceptron-based branch predictor.

PC

Table of
Perceptrons

Selected Perceptron

Selected LHR

Local Branch
History Table

GHR

Prediction

LH GHPC

Table of
Perceptrons

Selected Perceptron

Selected LHR

Local Branch
History Table

GHR

Prediction

LH GH

Figure 4.1. The perceptron-based branch predictor.

Predicting Unbiased Branches 55

The lower part of the branch address (PC) selects a perceptron in the table of
perceptrons (weights’ matrix) and, respectively a local history register in the
local branch history table. Both local and global branch history are used as
inputs for the selected perceptron in order to generate a prediction.

4.2. The Idealized Piecewise Linear Branch Predictor

 The piecewise linear branch prediction [Jim05], is a generalization
of perceptron branch prediction [Jim01] and path-based neural branch
prediction [Jim03]. The path-based neural predictor begins the branch’s
output computation in advance of the prediction, each computation step
being processed as soon as a new element of the path is executed. Thus, the
vector of weights used to generate prediction, is selected according to the
path leading up to a branch – based on all branch addresses belonging to
that path – rather than according to the current branch address alone as the
original perceptron does. This selection mechanism improves significantly
the prediction accuracy, because, due to the path information used in the
prediction process, the predictor is able to exploit the correlation between
the output of the branch being predicted and the path leading up to that
branch. On the other hand, the prediction latency is almost completely
hidden because the output’s computation begins far in advance of the
effective prediction. The most critical-timing operation is the sum of the
bias weight and the current partial sum. To generate a prediction, the
correlations of each component of the path are aggregated. This aggregation
is a linear function of the correlations for that path. Since many paths are
leading to a branch, there are many different linear functions for that branch,
and they form a piecewise-linear surface separating paths that lead to
predicted taken branches from paths that lead to predicted not taken
branches. The piecewise linear branch prediction [Jim05], is a
generalization of perceptron branch prediction [Jim01], which uses a single
linear function for a given branch, and respectively path-based neural
branch prediction [Jim03], which uses a single global piecewise-linear
function to predict all branches. The piecewise linear branch predictors use a
piecewise-linear function for a given branch, exploiting in this way different
paths that lead to the same branch in order to predict – otherwise linearly
inseparable – branches. The predictor has the same architecture as the
perceptron-based branch predictor (see Figure 4.1). The weight selection
mechanism of the idealized piecewise linear branch predictor is presented in
Figure 4.2, where GH is the global history, PC is the branch’s address and

56 A Systematic Approach to Predict Unbiased Branches

GA is the path – an array of the addresses afferent to the last executed
branches. Thus, the weight Wbpg corresponds to branch b (Bb ≤≤1), its
global history bit g (Gg ≤≤1) and the pth PC (Pp ≤≤1) from its path.

W1PG W2PG WBPG

W121 W221 WB2G

W111 W211 WB1G

W1P2 W2P2 WBP2

W121 W221 WB22

W111 W211 WB12

W1P1 W2P1 WBP1

W121 W221 WB21

W111 W211 WB11

PC

GA

GH

W1PG W2PG WBPG

W121 W221 WB2G

W111 W211 WB1G

W1P2 W2P2 WBP2

W121 W221 WB22

W111 W211 WB12

W1P1 W2P1 WBP1

W121 W221 WB21

W111 W211 WB11

W1PG W2PG WBPG

W121 W221 WB2G

W111 W211 WB1G

W1PG W2PG WBPG

W121 W221 WB2G

W111 W211 WB1G

W1P2 W2P2 WBP2

W121 W221 WB22

W111 W211 WB12

W1P2 W2P2 WBP2

W121 W221 WB22

W111 W211 WB12

W1P1 W2P1 WBP1

W121 W221 WB21

W111 W211 WB11

W1P1 W2P1 WBP1

W121 W221 WB21

W111 W211 WB11

PC

GA

GH

Figure 4.2. The weight selection mechanism of the idealized piecewise linear

branch predictor.

For the Idealized Piecewise Linear Branch Predictor we used dynamically
adjusted history lengths [Jim05]. The predictor counts the number of static
branches whose bias magnitude, noted |W0|, exceeds 2. If this number
exceeds 300, then the predictor switches to lower global and local history
lengths, otherwise, it uses higher global and local history lengths. This
heuristic is applied after 300,000 branches have passed.
 Related to Jiménez’s research, we gave an original interpretation of
his dynamically adjusting history length mechanism [Jim05], through our
previously introduced “unbiased branches” concept [Gel06, Vin06]. Thus,
his heuristics work as follows: if more than 300 “relatively biased” branches
are encountered (branches having |W0|>2), then it switches to lower
global/local history length. Otherwise (meaning that there were encountered
many “perfectly unbiased” branches, having |W0|≤2) it switches to higher
global/local history length. From our point of view, this is justified by the
fact that increasing history length reduces the number of unbiased branches.

Predicting Unbiased Branches 57

4.3. The Frankenpredictor

 The Frankenpredictor [Loh05a] is a gskew-agree global history
predictor combined with a path-based neural predictor. The prediction
mechanism of the Frankenpredictor is presented in Figure 4.3.

PC

Table of
Perceptrons

Selected Perceptron

Gskew-agree

GHR

Prediction

GHA1

A2

A3

AM

PHT3

PHT2

PHT1

PC

Table of
Perceptrons

Selected Perceptron

Gskew-agree

GHR

Prediction

GHA1

A2

A3

AM

PHT3

PHT2

PHT1

Figure 4.3. The Frankenpredictor’s architecture.

The gskew-agree predictor avoids interference by mapping potential
conflicting branches to different entries from three different tables. Three
different predictions are provided, the final prediction being made by taking
majority vote. The agreement approach uses a default BTFNT (backward
taken forward not taken) static prediction (bias) for each branch. The
predictions (P1, P2 and P3) generated by the selected pattern history table
entries are further compared with the bias. The neural predictor provides the
ability of working with long branch histories and it also provides the
hybridization by including the predictions of the gskew-agree predictor as
additional bits in the perceptron’s input vector – the agreement bits (A1, A2
and A3) provided by the three PHTs (Ai is 1 if Pi agrees with the bias and 0
otherwise, 1≤i≤3) and the majority vote (AM).

4.4. The O-GEHL Predictor

 The Optimized GEometric History Length (O-GEHL) predictor
[Sez05] uses M distinct prediction tables indexed with hash functions of the
branch address and the global branch history. Distinct history lengths of up

58 A Systematic Approach to Predict Unbiased Branches

to 200 bits and a path history of up to 16 bits, consisting of 1 address bit per
branch, are used to index the prediction tables. Table T0 is indexed using the
branch address. The history lengths used to index tables Ti, 1≤i<M, form a
geometric series:

)1()(1 LiL i ⋅= −α (4.1)

The prediction tables store predictions as signed counters. To compute a
prediction, a single counter is read from each prediction table. The
prediction is computed as the sign of the sum S of the M counters. The
prediction is taken if S is positive and not-taken otherwise. The prediction
mechanism of the O-GEHL predictor is presented in Figure 4.4.

+ Prediction = Sign+ Prediction = Sign

Figure 4.4. The O-GEHL predictor.

4.5. Value-History-Based Branch Prediction with
Markov Models

The context-based predictor predicts the next value based on a
particular stored pattern (context) that is repetitively generated in the value
sequence. Theoretically they can predict any stochastic repetitive sequences.
A context predictor is of order k if its context information includes the last k
values, and, therefore, the search is done using this pattern of k values
length. In fact, in this case the prediction process is based on a simple
Markov model [Rab89].

Predicting Unbiased Branches 59

S1 S2

S3

a12

a21

a22

a32

a23

a33

a13
a31

a11

Figure 4.5. A Markov chain with 3 states.

A first order discrete Markov process may be described at any time as being
in one of a set of N distinct states }...,,,{ 21 NSSSS = , as illustrated in
Figure 4.5. A full probabilistic description of discrete Markov chain requires
specification of the current state as well as all the predecessor states (the
current state in a sequence depends on all the previous states). For the
special case of a discrete, first order, Markov chain, this probabilistic
description is truncated to just the current and predecessor state (the current
state depends only on the previous state):

][...],,[121 itjtktitjt SqSqPSqSqSqP ====== −−− (4.2)

where tq is the state at time t. Thus, for a first order Markov chain with N
states, the set of transition probabilities between states Si and Sj is }{ ijaA = ,

where][1 itjtij SqSqPa === − , Nji ≤≤ ,1 , having the properties

0≥ija and 1
1

=∑
=

N

j
ija .

 For a Markov chain of order R the probabilistic description is
truncated to the current and R previous states (the current state depends on
R previous states). The following example shows the necessity of using
superior order Markov models. If the sequence of states is
AAABCAAABCAAA, the Markov models of order 1 and respectively 2
mispredict A, and only a Markov Model of order 3 predicts correctly the
next state B. This example is also presented in Figure 4.6.

60 A Systematic Approach to Predict Unbiased Branches

Sequence: aaabcaaabcaaa?

9 2 2
a b c

0st order Markov
Prediction: a

6 2 0
a b c

1st order Markov
Predictione: a

Context a

3 2 0
a b c

2nd order Markov
Prediction: a

Context aa 0 2 0
a b c

3rd order Markov
Prediction: b

Context aaa

Sequence: aaabcaaabcaaa?

9 2 2
a b c

0st order Markov
Prediction: a

9 2 29 2 2
a b ca b c

0st order Markov
Prediction: a

6 2 0
a b c

1st order Markov
Predictione: a

Context a 6 2 0
a b c

1st order Markov
Predictione: a

Context a

3 2 0
a b c

2nd order Markov
Prediction: a

Context aa 3 2 0
a b c

2nd order Markov
Prediction: a

Context aa 0 2 0
a b c

3rd order Markov
Prediction: b

Context aaa 0 2 0
a b c

3rd order Markov
Prediction: b

Context aaa

Figure 4.6. Markov predictors of different orders.

The predictors that implement the “Prediction by Partial Matching”
algorithm (PPM) [Saz97] represent an important class of context-based
predictors. Mudge et al. [Mud96] demonstrates that all two-level adaptive
predictors implement special cases of the PPM algorithm that is widely used
in data compression. It seems that PPM provides the ultimate predictability
limit of two-level predictors. The PPM-based predictor contains a set of
simple Markov predictors as it can be seen in Figure 4.6. It is predicted the
value that followed the context with the highest frequency. In the case of
complete-PPM predictor, if a prediction cannot be generated with the
Markov predictor of order k, then the pattern length is shortened and the
Markov predictor of order k-1 tries to predict and so on.

4.5.1. Local Branch Difference Predictor

Figure 4.7 presents the speculative branch execution mechanism

using a local PPM branch-difference predictor. The Branch Difference
History Table (BDHT) maintains for each static branch the values or the
signs of the inputs’ differences (two approaches) corresponding to the
branch’s last h dynamic instances (B1, B2, ..., Bh). It would be possible to
keep the differences corresponding to the previous h branches, therefore a
global correlation approach instead of a local approach. Obviously, hybrid
global-local approaches should be possible and useful too. Regarding the
approach that uses only the signs of the input differences, a value of 1 in the
history indicates that the corresponding branch difference was positive, a -1

Predicting Unbiased Branches 61

indicates a negative difference, while a 0 indicates equality between the
branch inputs. The BDHT entry is selected by the branch address (PC of
B0). The branch differences from the selected BDHT entry represent the
PPM’s input. Thus, the sign of the input difference (-1, 1, or 0)
corresponding to the current branch (B0) is predicted, using the complete-
PPM algorithm of order k, where k<h (see Figure 4.6). The branch B0 is
executed speculatively using the predicted inputs’ difference only if the
considered pattern of length k is repeated in the string of last h differences
with a frequency greater or equal than a certain threshold.

dif(Bh)

Branch Difference
History Table

Predicted
dif(B0)

dif(B2) dif(B1)

Prediction by Partial Matching
(PPM)

PC of B0

Pattern
length

Speculative
execution of B0

dif(Bh)

Branch Difference
History Table

Predicted
dif(B0)

dif(B2) dif(B1)

Prediction by Partial Matching
(PPM)

PC of B0PC of B0

Pattern
length

Speculative
execution of B0

Speculative
execution of B0

Figure 4.7. Speculative branch execution using local complete-PPM branch-
difference predictors.

4.5.2. Combined Global and Local Branch Difference
Predictor

Figure 4.8 presents the hybrid speculative branch execution
mechanism using a combined global and local PPM-based branch-difference
predictor. The Global History Register (GHR) contains the global history:
the global branch difference history or the global branch outcome history
(two different approaches). For each global history pattern, a distinct BDHT
is maintained. Thus, the BDHT is selected by the GHR. A certain BDHT

62 A Systematic Approach to Predict Unbiased Branches

contains for each static branch the inputs’ differences corresponding to the
branch’s last h dynamic instances (B1, B2, ..., Bh). The selected BDHT is
indexed by the branch address (PC of B0). The branch differences from the
selected BDHT entry represent the input for the PPM. Thus, the sign of the
input difference (-1, 1, or 0) corresponding to the current branch (B0) is
predicted, using the complete-PPM algorithm of order k, where k<h (see
Figure 4.6). The branch B0 is executed speculatively using the predicted
inputs’ difference only if the considered pattern of length k is repeated in the
string of last h differences with a frequency greater or equal than a certain
threshold.

Predicted
dif(B0)

Prediction by Partial Matching
(PPM)

PC of B0

Pattern
length

Speculative
execution of B0

GHR of B0
Branch Difference History Tables

dif(Bh) dif(B2) dif(B1)

dif(Bh) dif(B2) dif(B1)

dif(Bh) dif(B2) dif(B1)

BDHT 1

BDHT k

BDHT n

dif(Bh) dif(B2) dif(B1)

Predicted
dif(B0)

Prediction by Partial Matching
(PPM)

PC of B0PC of B0

Pattern
length

Speculative
execution of B0

Speculative
execution of B0

GHR of B0GHR of B0
Branch Difference History Tables

dif(Bh) dif(B2) dif(B1)

dif(Bh) dif(B2) dif(B1)

dif(Bh) dif(B2) dif(B1)

BDHT 1

BDHT k

BDHT n

Branch Difference History Tables

dif(Bh) dif(B2) dif(B1)dif(Bh) dif(B2) dif(B1)

dif(Bh) dif(B2) dif(B1)dif(Bh) dif(B2) dif(B1)

dif(Bh) dif(B2) dif(B1)dif(Bh) dif(B2) dif(B1)

BDHT 1

BDHT k

BDHT n

dif(Bh) dif(B2) dif(B1)

Figure 4.8. Speculative branch execution using global-local complete-PPM

branch-difference predictors.

4.5.3. Branch Difference Prediction by Combining Multiple
Partial Matches

Figure 4.9 presents the speculative branch execution mechanism

using the Branch-Difference Predicion by Combining Multiple Partial
Matches algorithm. The Branch Difference History Table (BDHT)

Predicting Unbiased Branches 63

maintains for each static branch the signs of the inputs’ differences (a value
of 1 in the history indicates that the corresponding branch difference was
positive, a -1 indicates a negative difference, and a 0 indicates equality
between the branch’s inputs) corresponding to the branch’s last h dynamic
instances (B1, B2, ..., Bh). A BDHT entry is selected by the branch’s address
(PC of B0), as in the previous approaches. The branch differences from the
selected BDHT entry represent the input for Markov predictors of different
orders. Thus, the sign of the input difference (-1, 1, or 0) corresponding to
the current branch (B0) is predicted using multiple Markov predictors of
orders ranging between [1, n], n<h (see Figure 4.9). The final branch
difference prediction is generated through the majority vote.

PC of B0

Branch Difference
History Table (BDHT)

dif(Bh) dif(B2) dif(B1)

Predicted
dif(B0)

(-1, 0, +1)

Speculative
execution of B0

Markov
ord. 1

Predicted
dif(B0)

(-1, 0, +1)

Predicted
dif(B0)

(-1, 0, +1)

Predicted
dif(B0)

(-1, 0, +1)

Voter

Markov
ord. k

Markov
ord. n

PC of B0PC of B0

Branch Difference
History Table (BDHT)

dif(Bh) dif(B2) dif(B1)dif(Bh) dif(B2) dif(B1)

Predicted
dif(B0)

(-1, 0, +1)

Speculative
execution of B0

Speculative
execution of B0

Markov
ord. 1

Markov
ord. 1

Predicted
dif(B0)

(-1, 0, +1)

Predicted
dif(B0)

(-1, 0, +1)

Predicted
dif(B0)

(-1, 0, +1)

Voter

Markov
ord. k

Markov
ord. k

Markov
ord. n

Markov
ord. n

Figure 4.9. Speculative branch execution by combining multiple Markov branch-

difference predictions.

Another possibility is to provide the final branch difference prediction
through confidence-based voting. In this case, each BDHT entry maintains n
saturated confidence counters associated to the n Markov predictors. The
confidence counters ranging in our application between [-4, 4] are updated
only if the corresponding Markov predictors provided a prediction (the
pattern of length k, 1≤ k≤n, was found at least once in the history of h
values), by incrementing them in the case of a correct prediction and
decrementing them otherwise. The confidence-based voting takes the
majority, considering each Markov prediction as many times as the
corresponding counter’s value shows (only if this value is greater than zero).

64 A Systematic Approach to Predict Unbiased Branches

We implemented and evaluated both these voting methods. Finally, the
branch B0 is executed speculatively using the predicted inputs’ difference.

4.6. Experimental Results

The perceptron and our branch difference predictors were
implemented by extending the sim-bpred simulator from SimpleSim-3.0
[Sim]. We also implemented the unbiased branch selection mechanism and,
thus, the predictors can be evaluated on unbiased branches too. We evaluate
programs from the SPECcpu2000 benchmark suite, especially those that
indicated a high percentage of unbiased branches [Gel06, Vin06]. The
Championship Branch Prediction (CBP-1) simulators afferent to the
Frankenpredictor [Loh05a] and respectively the Piecewise Linear Branch
Predictor [Jim05] were extended to work with the same unbiased branch
selection mechanism. In order to exploit these predictors we used the CBP-1
branch prediction framework which includes twenty traces (5 integer
programs, 5 floating point, 5 multimedia applications and 5 server
benchmarks) and a driver that reads the traces and calls the branch predictor
[CBP04]. The traces are approximately 30 million instructions long and
include both user and system codes. The two predictors were implemented
within the constraints of a storage budget of (64K + 256) bits.

All simulation results are reported on 1 billion dynamic instructions
skipping the first 300 million instructions from the SPEC2000 benchmarks
[SPEC] and, respectively, on all instructions from the INTEL benchmarks
[CBP04]. We note with LH(p)-GH(q) prediction information consisting in
local history (LH) of p bits, and global history (GH) of q bits. We also note
with PPM(tdim, hlen, plen, thres, htype) a complete-PPM branch-difference
predictor using a Branch Difference History Table (BDHT) of tdim entries,
a history length of hlen differences, a search pattern length of plen
(specifying the current state), a threshold of thres, and considering a history
of branch difference values or branch difference signs (htype=value/sign).

4.6.1. Evaluating Neural-Based Branch Predictors

In the first stage of this work, we’ll measure with present-day branch
predictors the prediction accuracy on all branches and, respectively, only on
the final list of unbiased branches identified in [Vin06], using different local
and global history lengths. Table 4.1 shows comparatively the results

Predicting Unbiased Branches 65

obtained on the SPEC2000 benchmarks using a simple perceptron-based
predictor integrated into Simplesim-3.0 [Sim].

 LH(28)-GH(0) LH(0)-GH(28) LH(28)-GH(28)LH(14)-GH(14) LH(28)-GH(40)
Bench All Unb. All Unb. All Unb. All Unb. All Unb.
bzip 87.3 70.1 90.7 74.8 90.6 74.8 90.5 74.8 90.6 74.7
gzip 85.7 77.9 91.5 79.1 91.9 79.3 91.6 79.3 92.1 79.9
mcf 87.3 51.0 98.5 69.4 98.7 72.5 98.3 67.5 98.8 73.7
parser 85.2 60.7 93.5 69.0 93.9 69.7 93.3 68.4 94.0 70.6
twolf 79.9 60.2 86.2 66.2 87.0 68.2 85.6 66.0 87.2 68.2
Mean 85.1 64.0 92.1 71.7 92.4 72.9 91.9 71.2 92.5 73.4

Table 4.1. The prediction accuracies obtained with the perceptron predictor using
different prediction information on all branches and, respectively, only on unbiased

branches from the SPEC2000 benchmarks. We used a table of perceptrons with
256 entries.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

LH
(28

)-G
H(0)

LH
(0)

-G
H(28

)

LH
(28

)-G
H(28

)

LH
(14

)-G
H(14

)

LH
(16

)-G
H(0)

LH
(0)

-G
H(16

)

LH
(8)

-G
H(8)

LH
(28

)-G
H(40

)

History

Pr
ed

ic
tio

n
ac

cu
ra

cy

All
Unbiased

Figure 4.10. The average prediction accuracies obtained with the perceptron

predictor using different prediction information on all branches and, respectively,
only on unbiased branches from the SPEC2000 benchmarks. We used a table of

perceptrons with 256 entries.

Table 4.1 intends to find an optimal LH(p)-GH(q) configuration within an
enormous space of possible solutions. We did not use a well-known
heuristic search method (e.g. genetic algorithms), preferring an empirical
one based on our experience in the branch prediction field. As Table 4.1 and
Figure 4.10 show, when we used the best configuration of the perceptron
predictor (a local history of 28 bits and a global history of 40 bits –

66 A Systematic Approach to Predict Unbiased Branches

determined based on laborious simulations), we obtained a prediction
accuracy of 92.58% on all branches and, respectively, of only 73.46% on the
unbiased branches.

Figures 4.11 and 4.12 show comparatively on the SPEC2000
benchmarks the prediction accuracies obtained with different present-day
branch predictors on all branches and, respectively, only on the final list of
unbiased branches identified in [Gel06, Oan06] using the XOR between the
global history of 32 bits and the path of 32 PCs.

94.18%

76.08%

70%

75%

80%

85%

90%

95%

100%

bz
ip

gz
ip mcf

pa
rse

r
tw

olf

Ave
rag

e

Benchmark

Pr
ed

ic
tio

n
ac

cu
ra

cy

All
Unbiased

Figure 4.11. The average prediction accuracies obtained with the Frankenpredictor

on the SPEC2000 benchmarks.

94.92%

77.30%

70%

75%

80%

85%

90%

95%

100%

bz
ip

gz
ip mcf

pa
rse

r
tw

olf

Ave
rag

e

Benchmark

Pr
ed

ic
tio

n
ac

cu
ra

cy

All
Unbiased

Figure 4.12. The average prediction accuracies obtained with the piecewise linear

branch predictor on the SPEC2000 benchmarks.

Predicting Unbiased Branches 67

We measured the prediction accuracies with the Frankenpredictor [Loh05a],
and the Idealized Piecewise Linear Branch Predictor [Jim05], both described
in the previous sections. We used the original Idealized Piecewise Linear
Branch Predictor where the global history length is dynamically adjusted
between 18 and 48 bits and, respectively, the local history length between 1
and 16 bits. For the Frankenpredictor we used a global history of 59 bits.
Even if the Idealized Piecewise Linear Branch Predictor doesn’t solve
satisfactory the unbiased branches problem, it predicts them with an average
accuracy of 77.3% that is better than all the other simulated branch
prediction schemes.

 Frankenpredictor Piecewise

Benchmark All Unb. All Unb.
dist-fp-1 98.5 71.9 98.4% 78.2
dist-fp-2 99.1 95.4 99.0% 97.5
dist-fp-3 99.6 96.0 99.6% 99.1
dist-fp-4 99.9 90.3 99.8% 95.2
dist-fp-5 99.9 84.7 99.8% 96.8
dist-int-1 97.6 79.9 98.3% 87.9
dist-int-2 93.4 81.5 94.0% 85.7
dist-int-3 91.3 71.7 93.2% 79.2
dist-int-4 98.9 91.4 98.6% 92.1
dist-int-5 99.7 74.1 99.7% 88.0
dist-mm-1 92.8 83.8 93.0% 85.7
dist-mm-2 90.6 84.6 91.0% 89.3
dist-mm-3 99.1 67.9 99.4% 87.0
dist-mm-4 98.6 98.7 98.6% 98.9
dist-mm-5 95.2 85.4 95.2% 88.8
dist-serv-1 97.8 83.5 97.5% 89.4
dist-serv-2 97.7 83.7 97.6% 89.2
dist-serv-3 95.6 84.8 95.1% 88.9
dist-serv-4 96.3 77.5 96.4% 83.2
dist-serv-5 96.7 75.2 96.7% 82.2
Average 96.9 83.1 97.0% 89.1

Table 4.2. The prediction accuracies obtained with the piecewise linear branch
predictor and the Frankenpredictor on the Intel benchmarks.

Table 4.2 and Figures 4.13 and 4.14 show comparatively on the CBP-1 Intel
benchmarks [CBP04] the prediction accuracies obtained on all branches
and, respectively, only on the final list of unbiased branches identified in
[Gel06, Oan06] using the XOR between the global history of 32 bits and the
path of 32 PCs. We measured the prediction accuracies on the Intel
benchmarks with the Idealized Piecewise Linear Branch Predictor [Jim05]

68 A Systematic Approach to Predict Unbiased Branches

and the Frankenpredictor [Loh05a]. We used for both predictors the same
configurations as on the SPEC2000 benchmarks. Even if the Idealized
Piecewise Linear Branch Predictor doesn’t solve satisfactory the unbiased
branches problem, it predicts them with an average accuracy of 89.1% that
is better than all the other simulated branch prediction schemes. However,
we are reserved regarding the CBP-1 Intel benchmarks due to their
shortness. Furthermore, the Second Championship Branch Prediction
Competition (CBP-2) [CBP06] have used all the twelve CPUintSPEC2000
benchmarks and eight JavaSPECjvm98 benchmarks.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

dist-fp dist-int dist-mm dist-serv

Benchmark type

Pr
ed

ic
tio

n
ac

cu
ra

cy

PA/all
PA/unbiased

Figure 4.13. The average prediction accuracies obtained with the Frankenpredictor

on the Intel benchmarks.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

dist-fp dist-int dist-mm dist-serv

Benchmark type

Pr
ed

ic
tio

n
ac

cu
ra

cy

PA/all
PA/unbiased

Figure 4.14. The average prediction accuracies obtained with the piecewise linear

branch predictor on the Intel benchmarks.

Predicting Unbiased Branches 69

We empirically found out that the behavior of difficult branches – as
we defined them – cannot be sufficiently learned neither by neural
predictors. Figures 4.11, 4.12, 4.13 and 4.14 confirm us again, that the
unbiased branches, identified in our previous work [Vin06, Gel06], are
hard-to-predict with present-day branch predictors.

4.6.2. Evaluating the O-GEHL Predictor

We have also evaluated the Optimized GEometric History Length
(O-GEHL) predictor [Sez05], described in section 4.4 (see Figure 4.4). We
used an 8-table O-GEHL predictor. The experimental results obtained on the
SPEC2000 benchmarks are presented in Figure 4.15.

94.02%

75.25%

65%
70%
75%
80%
85%
90%
95%

100%

bz
ip

gz
ip mcf

pa
rse

r
tw

olf

Ave
rag

e

Benchmark

Pr
ed

ic
tio

n
ac

cu
ra

cy

All
Unbiased

Figure 4.15. The average prediction accuracies obtained with the O-GEHL

predictor on the SPEC2000 benchmarks.

As it can be observed, the neural branch predictors provided higher
prediction accuracy then the O-GEHL predictor (see comparatively Figures
4.11, 4.12 and 4.15).

4.6.3. Evaluating Local Branch Difference Predictors

We’ll continue this work by evaluating the prediction accuracy of
the complete-PPM branch-difference predictor (see Figure 4.7) on all

70 A Systematic Approach to Predict Unbiased Branches

branches and, respectively, only on the final list of unbiased branches
(identified in [Vin06]). We started our simulations by evaluating different
local history lengths. Table 4.3 shows comparatively the results obtained on
the SPEC2000 benchmarks, using a history of branch difference values and,
respectively, a history of branch difference signs (-1 if negative, 1 if
positive, or 0), considering an unlimited BDHT, a pattern length of 3, and a
threshold of 1.

 History of Branch
Difference Values

History of Branch
Difference Signs

History All Unb. All Unb.
LH(8) 85.78% 64.76% 86.56% 65.33%
LH(16) 86.84% 66.35% 88.34% 68.26%
LH(24) 86.79% 66.52% 88.66% 68.61%
LH(32) 86.83% 66.87% 88.88% 68.78%
LH(40) 86.81% 66.91% 89.03% 68.98%
LH(48) 86.77% 67.04% 89.11% 69.12%
LH(56) 86.78% 67.33% 89.19% 69.23%
LH(64) 86.76% 67.43% 89.26% 69.37%
LH(128) 86.56% 67.52% 89.45% 69.70%
LH(256) 86.39% 67.94% 89.58% 69.75%

Table 4.3. The average prediction accuracies on all branches and, respectively,
only on unbiased branches from the SPEC2000 benchmarks, using branch-

difference predictors with different local history lengths.

60%
65%
70%
75%
80%
85%
90%
95%

LH
(8)

LH
(16

)

LH
(24

)

LH
(32

)

LH
(40

)

LH
(48

)

LH
(56

)

LH
(64

)

Local history

Pr
ed

ic
tio

n
ac

cu
ra

cy

All-Sign
Unbiased-Sign
All-Value
Unbiased-Value

Figure 4.16. The average prediction accuracies on the SPEC2000 benchmarks,
using a PPM(tdim=unlimited, hlen=varied, plen=3, thres=1, htype=value and

sign) branch difference predictor with different local history lengths.

Predicting Unbiased Branches 71

Figure 4.16 shows the difference’s value prediction accuracies
obtained on the SPEC2000 benchmarks, using an unlimited BDHT
containing the values respectively the signs of the last branch differences, a
pattern length of 3, and a threshold of 1. As simulations show (Figure 4.16),
branch differences can be better predicted when only difference signs are
used as history instead of difference values. Consequently, the sign of the
current branch difference is better correlated with the signs of its previous
differences than with the values of those differences.

The experimental results also show that the performance is relatively
saturated starting with a local history length of 24 bits. Why is better to use
only the signs of differences as history information instead of the values of
differences? The number of distinct symbols that can occur in a value
history is huge reported to only three symbols that can appear in a sign
history. Thus, the frequency of symbols in a value history is very low. In the
following example only a Markov predictor of order 1 can be used for the
value history, and it generates a misprediction, while in the case of the sign
history, even a Markov predictor of order 5 can be used, which generates the
correct prediction:

 Value history: -126, -34, 7, -42, -28, 75, -829, -7982, 102, -542, -42, ?
 Sign history: -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, ?

Obviously, through a sign history much deeper correlations can be
exploited than with a value history.

0.42%

95.64%

22.54%

6.68%

67.59%

1.21% 2.73% 3.19%
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

markov-0 markov-1 markov-2 markov-3

Markov predictors

U
sa

ge Sign
Value

Figure 4.17. The average usage rates of Markov predictors using

PPM(tdim=unlimited, hlen=24, plen=3, thres=1, htype=sign and value) branch
difference predictors on all branches.

72 A Systematic Approach to Predict Unbiased Branches

Figure 4.17 compares the sign history with the value history in terms of
usage rate afferent to Markov predictors of different orders. We used the
optimal history length 24 and a pattern length of 3, and therefore, we
evaluated the usage rates corresponding to Markov predictors of orders 0, 1,
2 and 3. As Figure 4.17 shows, more often are used superior order Markov
predictors by using a sign history, and thus, deeper correlations can be
exploited. Therefore, we continued by evaluating different pattern lengths
using an unlimited BDHT, a sign history of 24 branch difference signs, and
a threshold of 1. As Figure 4.18 shows, the best PPM’s pattern length is 3,
considering the optimal local history of 24 branch difference signs.

88.66%

68.61%

65%

70%

75%

80%

85%

90%

1 2 3 4 5 6 7 8

Pattern length

Pr
ed

ic
tio

n
ac

cu
ra

cy

All
Unbiased

Figure 4.18. The average prediction accuracies on all branches and, respectively,

only on unbiased branches from the SPEC2000 benchmarks, using a
PPM(tdim=unlimited, hlen=24, plen=varied, thres=1, htype=sign) branch

difference predictor with different pattern lengths.

88.66% 89.51%

68.61% 70.14%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

LH(24)-
P(3)

LH(32)-
P(4)

LH(64)-
P(5)

LH(128)-
P(6)

LH(256)-
P(6)

PPM configuration

Pr
ed

ic
tio

n
ac

cu
ra

cy

All
Unbiased

Figure 4.19. The average prediction accuracies on SPEC2000 benchmarks using a

PPM(tdim=unlimited, hlen=varied, plen=varied, thres=1, htype=sign) branch
difference predictor exploring different local history lengths and pattern lengths.

Predicting Unbiased Branches 73

Figure 4.19 explores the space of local history lengths and pattern lengths
using a threshold of 1 and confirms that an acceptable choice (taking into
account a good accuracy/complexity trade-off report) is to use a history of
24 branch difference signs with a pattern length of 3.

65%
70%
75%
80%
85%
90%
95%

100%

T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8

Threshold

Pr
ed

ic
tio

n
ac

cu
ra

cy

All
Unbiased

Figure 4.20. The average confidence on all branches and, respectively, only on

unbiased branches from the SPEC2000 benchmarks, using a PPM(tdim=unlimited,
hlen=24, plen=3, thres=varied, htype=sign) branch difference predictor with

different threshold values.

Threshold Lost predictions [%]
T=1 0.00
T=2 7.59
T=3 13.37
T=4 17.31
T=5 20.50
T=6 23.40
T=7 25.13
T=8 26.98

Table 4.4. Average percentages of predictions lost with different thresholds.

We also studied the influence of the threshold’s value over the prediction
accuracy, using an unlimited BDHT, a local history of 24 branch difference
signs, and a pattern length of 3. The threshold’s value means how many
times the current search pattern must be found in the history string in order
to generate a prediction, implementing thus a confidence degree (otherwise,
no prediction is generated). Strictly considering the confidence metric, the
experimental results presented in Figure 4.20 show that the optimal
threshold value is 7. However, in this case, the total number of predictions
decreases at average with 25.13% (see Table 4.4). Considering T=1, the

74 A Systematic Approach to Predict Unbiased Branches

global prediction accuracy on unbiased branches A(T=1) is 68.61%. In
contrast, considering T=7, the global accuracy A(T=7) is 74.87%x78.33% =
58.64% and, respectively, for T=2, A(T=2) is 92.41%x71.16% = 65.75%.
Therefore, from the global accuracy point of view T=1 is optimal. The last
parameter we varied is the dimension of the BDHT.

60%

65%

70%

75%

80%

85%

90%

95%

100%

64 128 192 256 unlimited

Local history entries

Pr
ed

ic
tio

n
ac

cu
ra

cy

All(T=1)
Unbiased(T=1)
All(T=7)
Unbiased(T=7)

Figure 4.21. The average prediction accuracies on the SPEC2000 benchmarks

using a PPM(tdim=varied, hlen=24, plen=3, thres=1 and 7, htype=sign) branch
difference predictor considering different BDHT dimensions.

Figure 4.21 shows that a BDHT with 256 entries provides the same results
as an unlimited BDHT does. Consequently, we determined that the optimal
branch difference predictor configuration is PPM(tdim=256, hlen=24,
plen=3, thres=1 or 7, htype=sign). The signs of branch differences can be
predicted considering this optimal configuration with an accuracy of
68.60% on the unbiased branches and 88.66% on all branches and,
respectively, a confidence of 78.33% on the unbiased branches and 96.05%
on all branches.

The next step consists in speculatively executing branches based on
their predicted input differences. The final confidence branch prediction
accuracies – evaluating all branches and, respectively, only unbiased
branches –, obtained using the speculative branch differences generated with
the optimal branch difference predictor, are presented in Tables 4.5 (without
threshold) and 27 (with threshold).

The average prediction accuracy obtained without threshold on the
unbiased branches is only 71.76% (see Table 4.5). Using a threshold of 7, it
grows to 79.69% (see Table 4.6).

Predicting Unbiased Branches 75

 Branch Prediction Accuracy [%]

Benchmark All Unb.
bzip 89.92 74.50
gzip 88.95 79.06
mcf 97.10 66.25
parser 91.47 66.01
twolf 85.29 73.00
Average 90.55 71.76

Table 4.5. The final branch prediction accuracies on all branches and, respectively,
only on unbiased branches, obtained by using the speculative branch differences

generated with the optimal branch-difference predictor without threshold.

 Branch Prediction Accuracy [%]

Benchmark All Unb.
bzip 96.88 79.94
gzip 95.99 86.28
mcf 99.19 75.14
parser 96.71 73.26
twolf 93.40 83.83
Average 96.43 79.69

Table 4.6. The final branch prediction accuracies on all branches and, respectively,
only on unbiased branches, obtained by using the speculative branch differences

generated with the optimal branch-difference predictor using a threshold of 7.

The average prediction accuracy measured only on unbiased branches and,
respectively, on all branches is lower for the complete-PPM predictor
comparing with the perceptron predictor. Consequently, unbiased branches
remain hard-to-predict even with the sign of the condition’s difference in the
local approach, due to the quasi-random values afferent to the branch
condition. Therefore, a hybrid global-local approach is necessary.

4.6.4. Evaluating Combined Global and Local Branch
Difference Predictors

 In the combined global and local approach, each global history
pattern points to its own BDHT (see Figure 4.8). The selected BDHT is
indexed by the PC, as in the local approach. First, we evaluated the
predictor by maintaining in the GHR (see Figure 4.8) the global branch

76 A Systematic Approach to Predict Unbiased Branches

difference history: the signs of the inputs’ differences corresponding to the
previous h branches. Figure 4.22 shows comparatively the results obtained
with and without threshold on all branches and, respectively, only on the
unbiased branches from the SPEC 2000 benchmarks.

60%
65%
70%
75%
80%
85%
90%
95%

100%

0 1 2 3 4

Global history length

Pr
ed

ic
tio

n
ac

cu
ra

cy

All(T=1)
Unbiased(T=1)
All(T=7)
Unbiased(T=7)

Figure 4.22. The average confidence on the SPEC2000 benchmarks using a

PPM(tdim=256, hlen=24, plen=3, thres=1 and 7, htype=sign) branch difference
predictor considering different global branch difference history lengths.

We also evaluated the predictor by maintaining in the GHR the
global branch outcome history (Taken / Not Taken). Our simulation results
show that the confidence is slightly better on unbiased branches if we use
the global difference-sign history. Considering a global history length of 4
(GH=4), we obtained a confidence of 68.81% with the global difference-
sign history, opposite to 67.84% obtained with global branch outcome
history. The difference-sign history can be more efficient because, due to its
additional information, it can efficiently exploit shorter contexts, too. The
following example presents the situation for bgez:

Difference history: 138, 52, 47, 0, -591, 5783, 4, 702, 0, -35, 721, 5, 14, 0, ?
Sign history: +, +, +, 0, -, +, +, +, 0, -, +, +, +, 0, ?
Output history: T, T, T, T, NT, T, T, T, T, NT, T, T, T, T, ?

If after “0” statistically follows “-“ (and, in the case of bgez, “0” is
associated together with “+” to Taken) a first order Markov can correctly
predict in the case of sign history, while, in the case of outcome history, the
Markov predictor must be of order 4 or higher for correct prediction.

Predicting Unbiased Branches 77

The signs of branch differences can be predicted, considering a
PPM(tdim=256, hlen=24, plen=3, thres=1, htype=sign) having a global
branch difference history of 4, with an accuracy of 68.81% on the unbiased
branches and, respectively 90.47% on all branches (see Figure 4.22). The
next step consists in executing branches based on their predicted input
differences. The final branch prediction accuracies – evaluating all branches
and, respectively, only unbiased branches –, obtained by using the
speculative branch differences generated with this global-local branch
difference predictor, are presented in Table 4.7. The results show that even
the global-local PPM cannot improve the branch prediction accuracy
obtained with the perceptron predictor.

 Branch Prediction Accuracy [%]

Benchmark All Unb.
bzip 92.32 75.69
gzip 90.59 78.33
mcf 98.22 64.24
parser 93.90 69.14
twolf 86.62 70.28
Average 92.33 71.54

Table 4.7. The final branch prediction accuracies on all branches respectively only
on unbiased branches, obtained using the speculative branch differences generated

with the optimal global-local branch-difference predictor without threshold.

 Branch Prediction Accuracy [%]

Benchmark All Unb.
bzip 97.62 84.44
gzip 96.70 86.36
mcf 99.53 74.46
parser 98.07 78.56
twolf 95.26 82.41
Average 97.44 81.25

Table 4.8. The final branch prediction accuracies obtained by using the optimal
global-local branch-difference predictor with a threshold of 7 (confidence).

The final branch prediction accuracies – evaluating all branches and,
respectively, only unbiased branches –, obtained by using the speculative
branch differences generated using this global-local branch difference
predictor with a threshold of 7, are presented in Table 4.8. As it can be
observed, the global-local approach improves significantly the average
prediction accuracy on all branches to 97.44%, if a threshold of 7 is used.

78 A Systematic Approach to Predict Unbiased Branches

However, the average prediction accuracy remains still low on unbiased
branches: 81.25%.

4.6.5. Branch Difference Prediction by Combining Multiple
Partial Matches

 Branch differences are predicted by five Markov predictors of orders
ranging between [1, 5]. The final prediction is provided through majority
voting, as we already presented in paragraph 4.5.3. We started our
evaluations using a BDHT of 256 entries, local branch difference history of
24 values. Figure 4.23 presents the results obtained on the SPEC2000
benchmarks considering simple voting respectively confidence-based
voting.
 It can be observed that through confidence-based voting the branch
differences can be predicted with a slightly higher accuracy than through
simple voting.

60%
65%
70%
75%
80%
85%
90%
95%

100%

bz
ip

gz
ip mcf

pa
rse

r
tw

olf

Ave
rag

e

Benchmark

Pr
ed

ic
tio

n
ac

cu
ra

cy

All-Simple-Voting
All-Conf-Voting
Unbiased-Simple-Voting
Unbiased-Conf-Voting

Figure 4.23. Branch difference prediction accuracies by combining multiple partial

matches through simple voting and confidence-based voting.

Table 4.9 presents the final branch prediction accuracies – evaluating all
branches and, respectively, only unbiased branches – obtained using the
speculative branch differences generated by combining multiple partial
matches through confidence-based voting.

Predicting Unbiased Branches 79

 Branch Prediction Accuracy [%]

Benchmark All Unb.
bzip 91.52 75.54
gzip 90.28 79.50
mcf 97.32 66.75
parser 92.27 67.13
twolf 86.55 72.30
Average 91.59 72.24

Table 4.9. The final branch prediction accuracies on all branches and, respectively,
only on unbiased branches, obtained using the speculative branch differences

generated by combining multiple partial matches through confidence-based voting.

Figure 4.24 shows again, that the unbiased branches identified in [Gel06,
Oan06, Vin06] cannot be accurately predicted even with condition-history-
based Markov predictors. The highest average prediction accuracy on the
unbiased branches, of 77.30%, was provided by the piecewise linear branch
predictor.

77.30%

60%

65%

70%

75%

80%

85%

bzip gzip mcf parser twolf Average

Benchmark

Pr
ed

ic
tio

n
ac

cu
ra

cy

Local PPM
Global-Local PPM
Multiple Markov
Perceptron
Piecewise
Frankenpredictor
O-GEHL

Figure 4.24. The final branch prediction accuracies obtained without threshold
using the perceptron-based predictors, the O-GEHL predictor, the local complete-
PPM, the global-local complete-PPM and respectively prediction by combining

multiple partial matches through confidence-based voting, only on unbiased
branches.

We also studied the influence of the threshold’s value over the
prediction accuracy by combining multiple partial matches through
confidence-based voting, using a BDHT with 256 entries, and a local history
of 24 branch difference signs. In this case, the confidence-based voting
takes the majority, considering only Markov predictions found in the history
string after the considered pattern at least T (threshold) times.

80 A Systematic Approach to Predict Unbiased Branches

91.61%

91.23%

90.12%

71.51%

69.93% 70.24%

65%

70%

75%

80%

85%

90%

95%

T=1 T=2 T=3 T=4 T=5 T=6 T=7

Pattern length

Pr
ed

ic
tio

n
ac

cu
ra

cy

All
Unbiased

Figure 4.25. Branch difference prediction accuracies by combining multiple partial

matches through confidence-based voting with different thresholds.

Threshold Lost predictions [%]
T=1 2,25
T=2 5,20
T=3 6,62
T=4 8,06
T=5 9,40
T=6 10,78
T=7 13,02
T=8 2,25

Table 4.10. Average percentages of predictions lost by using different thresholds.

The experimental results presented in Figure 4.25 and Table 4.10 show that
the optimal threshold value is 2. Thus, the final branch prediction accuracy
by combining multiple partial matches through confidence-based voting
with a threshold of 2 is 73.05% on unbiased branches.

5. Using Last Branch Difference as
Prediction Information

Further, we evaluated the percentage of unbiased context instances
using the last known branch condition difference together with global
histories of p bits (1≤p≤24). A branch condition difference consists in the
difference of the operand values implied in the branch condition. More than
two branch condition differences are not necessary [Smi98, Hei99b]. Table
5.1 and Figure 5.1 compares the percentages of unbiased branches using the
global history (GH), the global history concatenated with the path (GH +
PATH), respectively the global history concatenated with the last branch
difference (GH + LBD).

Context p=1 p=4 p=8 p=12 p=16 p=20 p=24
GH (p bits) 49.28 39.38 32.08 27.23 24.46 22.08 20.23
GH (p bits) + PATH (p PCs) 42.19 36.39 29.71 25.51 23.13 20.74 19.01
GH (p bits) + LBD 36.99 32.25 26.94 22.39 19.91 17.85 16.24

Table 5.1. The gain introduced by the path respectively last branch difference
(LBD) for different context lengths – SPEC2000 benchmarks [%].

15%

20%

25%

30%

35%

40%

45%

50%

p=1 p=4 p=8 p=12 p=16 p=20 p=24

Context Length

U
nb

ia
se

d
C

on
te

xt
 In

st
an

ce
s

GH (p bits)

GH (p bits) + PATH (p PCs)

GH (p bits) + LBD

Figure 5.1. The gain introduced by the path respectively last branch difference

(LBD) for different context lengths – SPEC2000 benchmarks.

82 A Systematic Approach to Predict Unbiased Branches

The results, presented in Figure 5.1, show that the last branch
condition is more efficient than the path information: it decreased the
percentage of unbiased branches for all evaluated context lengths (1≤p≤24).
Therefore we can use this new prediction information in some state-of-the-
art branch predictors in order to increase prediction accuracy [Gel07a,
Gel07b].

Global Pattern History Table (GPHT)

Predicted PC Prediction bits
W

L2size

LBD

W bits

XOR

GHR

W bits

Global Pattern History Table (GPHT)

Predicted PC Prediction bits
W

L2size

LBD

W bits

XORXOR

GHR

W bits

Figure 5.2. The GAg predictor using the last branch difference (LBD).

We first analyzed a GAg scheme that uses the last branch difference (LBD)
by XORing it with the GHR (as the Gshare XORed the PC with the GHR).
The predictor is presented in Figure 5.2. Table 5.2 presents the prediction
accuracies obtained with the modified GAg predictor on unbiased branches.

Bench
GHPC16
(gshare) GHLBD16

LBD4-
GHLBD12

LBD8-
GHLBD8

Shifted-
GHLBD16

Shifted-
LBD4-
GHLBD12

Shifted-
LBD8-
GHLBD8

LBD4-
GH12

Signed-
LBD4-
GHLBD12

bzip 67.40 66.16 69.66 70.26 66.55 69.45 70.01 70.12 69.64
gzip 71.89 68.86 73.62 75.54 69.25 73.55 74.46 74.30 73.47
mcf 82.44 81.30 78.63 72.27 82.13 77.24 70.97 78.40 78.71
parser 64.96 63.23 66.39 68.93 62.72 65.75 66.40 67.62 66.05
twolf 57.78 56.15 58.12 60.20 56.29 57.54 59.52 58.93 58.14
Mean 68.89 67.14 69.28 69.44 67.39 68.71 68.27 69.87 69.20

Table 5.2. Prediction accuracies of the modified GAg predictor on unbiased
branches.

The following contexts have been used with the modified GAg predictor
(Table 5.2):

Using Last Branch Difference as Prediction Information 83

• GHPC16: the 16 least significant bits of the branch PC (shifted to
right by 3 bits) XORed with 16 bits of global history (gshare
predictor);

• GHLBD16: 16 least significant bits of last branch difference XORed
with 16 bits of global branch history;

• LBD4-GHLBD12: 4 least significant bits of last branch difference
concatenated with the XOR between 12 least significant bits of last
branch difference and 12 bits of global branch history;

• LBD8-GHLBD8: 8 least significant bits of last branch difference
concatenated with the XOR between 8 least significant bits of last
branch difference and 8 bits of global branch history;

• Shifted-GHLBD16: the 16 least significant bits of last branch
difference (shifted to right by 3 bits) XORed with 16 bits of global
history;

• Shifted-LBD4-GHLBD12: 4 least significant bits of last branch
difference (shifted to right by 3 bits) concatenated with the XOR
between 12 least significant bits of last branch difference (shifted to
right by 3 bits) and 12 bits of global branch history;

• Shifted-LBD8-GHLBD8: 8 least significant bits of last branch
difference (shifted to right by 3 bits) concatenated with the XOR
between 8 least significant bits of last branch difference (shifted to
right by 3 bits) and 8 bits of global branch history;

• LBD4-GH12: 4 least significant bits of last branch difference
concatenated with 12 bits of global branch history;

• Signed-LBD4-GHLBD12: sign bit of last branch difference (0 if
positive, 1 if negative) concatenated with 3 least significant bits of
last branch difference, and respectively, with the XOR between 12
least significant bits of last branch difference and 12 bits of global
branch history.

We have also analyzed a PAg scheme that uses the local (per-address) LBD
(last branch difference) by XORing it with the LHR (local history register).
The Per-address Branch History Table (PBHT) maintains for each branch its
own Local History (LH) and, respectively, its Last Branch Difference
(LBD). The predictor is presented in Figure 5.3. Table 4 presents the
prediction accuracies obtained with the modified PAg predictor on unbiased
branches.

84 A Systematic Approach to Predict Unbiased Branches

W Global Pattern History Table (GPHT)

Predicted PC Prediction bits L2size
W

XOR

PChigh PClow

log2L1size
LHR k

W bits

Per-address Branch
History Table (PBHT)

LBD k

W bits

WW Global Pattern History Table (GPHT)

Predicted PC Prediction bits L2size

Global Pattern History Table (GPHT)

Predicted PC Prediction bits L2size
W

XORXOR

PChigh PClow

log2L1size

PChigh PClow

log2L1size
LHR k

W bits

Per-address Branch
History Table (PBHT)

LBD k

W bits

W

Figure 5.3. The PAg predictor using the local LBD.

Bench
LH16
(PAg) LHLBD16

LBD4-
LHLBD12

LBD8-
LHLBD8

Shifted-
LHLBD16

Shifted-LBD4-
LHLBD12

Shifted-
LBD8-
LHLBD8

LBD4-
LH12

Signed-LBD4-
LHLBD12

bzip 74.83 69.86 74.61 74.68 70.07 74.54 74.35 74.80 74.67
gzip 78.37 75.77 79.30 79.62 77.53 78.36 78.48 79.30 79.31
mcf 72.18 70.93 70.55 68.15 73.79 71.91 68.34 69.21 68.76
parser 72.64 74.06 74.82 73.65 72.95 74.30 73.23 73.13 74.52
twolf 68.84 65.75 68.83 69.43 64.60 69.66 70.06 68.16 68.77
Mean 73.37 71.27 73.62 73.11 71.79 73.75 72.89 72.92 73.21

Table 5.3. Prediction accuracies of the modified PAg predictor on unbiased
branches.

The second level (GPHT) is indexed, depending on the used context, as
follows:

• LH16: the second level is indexed by 16 bits of local branch history
(PAg predictor);

• LHLBD16: 16 least significant bits of last branch difference XORed
with 16 bits of local branch history;

• LBD4-LHLBD12: 4 least significant bits of last branch difference
concatenated with the XOR between 12 least significant bits of last
branch difference and 12 bits of local branch history;

Using Last Branch Difference as Prediction Information 85

• LBD8-LHLBD8: 8 least significant bits of last branch difference
concatenated with the XOR between 8 least significant bits of last
branch difference and 8 bits of local branch history;

• Shifted-LHLBD16: 16 least significant bits of last branch difference
(shifted to right by 3 bits) XORed with 16 bits of local history;

• Shifted-LBD4-LHLBD12: 4 least significant bits of last branch
difference (shifted to right by 3 bits) concatenated with the XOR
between 12 least significant bits of last branch difference (shifted to
right by 3 bits) and 12 bits of local branch history;

• Shifted-LBD8-LHLBD8: 8 least significant bits of last branch
difference (shifted to right by 3 bits) concatenated with the XOR
between 8 least significant bits of last branch difference (shifted to
right by 3 bits) and 8 bits of local branch history;

• LBD4-LH12: 4 least significant bits of last branch difference
concatenated with 12 bits of local branch history;

• Signed-LBD4-LHLBD12: sign bit of last branch difference (0 if
positive, 1 if negative) concatenated with 3 least significant bits of
last branch difference, and respectively, with the XOR between 12
least significant bits of last branch difference and 12 bits of local
branch history.

Figure 5.4 presents the scheme of the perceptron-based branch
predictor that is using as additional prediction information the global last
branch difference (LBD). The lower part of the branch address (PC) selects
a perceptron in the table of perceptrons and, respectively a local history
register in the local branch history table. Thus, local and global branch
histories together with the last branch difference are used as inputs for the
selected perceptron in order to generate a prediction.

Table 5.4 presents the prediction accuracies obtained with the
piecewise linear branch predictor on the unbiased branches, using the
global LBD as additional prediction information. The global history length
is dynamically adjusted between 18 and 48 bits and, respectively, the local
history length between 1 and 16 bits, as in [Jim05, Gel07a, Gel07b]. We
obtained an unsignificant gain when we used the last branch difference
(LBD) entirely (32 bits), even with an increased number of weights from
8590 upto 30713 (the higher weights number being justified by the long
additional information).

86 A Systematic Approach to Predict Unbiased Branches

PC

Selected Perceptron

Selected LHR

Local Branch
History Table

Prediction

LH

Table of
Perceptrons

GHR

GH

LBD

LBDPC

Selected Perceptron

Selected LHR

Local Branch
History Table

Prediction

LH

Table of
Perceptrons

GHRGHR

GH

LBDLBD

LBD

Figure 5.4. Perceptron-based branch predictor using the last known global branch
difference.

Bench
GH-LH-
8590w

GH-LH-LBD-
8590w

GH-LH-LBD-
12530w

GH-LH-LBD-
15720w

GH-LH-LBD-
20573w

GH-LH-LBD-
30713w

bzip 76.63% 78.53% 78.58% 78.61% 78.61% 78.64%
gzip 81.29% 81.51% 81.54% 81.54% 81.55% 81.57%
mcf 74.74% 74.79% 74.78% 74.80% 74.79% 74.80%
parser 77.11% 78.31% 78.58% 78.73% 78.84% 78.99%
twolf 76.73% 76.56% 76.77% 77.20% 77.37% 77.52%
Mean 77.30% 77.94% 78.05% 78.18% 78.23% 78.30%

Table 5.4. The prediction accuracies obtained with piecewise linear branch
predictor on unbiased branches, using the global LBD as additional prediction

information.

However, with the modified piecewise linear branch predictor we
obtained a prediction accuracy of 78.30% (see Table 5.4) opposite to those
obtained with the modified GAg, 69.87% (see Table 5.2), respectively the modified
PAg, 73.75% (see Table 5.3). This gain was probably obtained because both the
modified GAg and PAg predictors use a hashing between LBD and global
respectively local branch history, while the modified piecewise linear branch
predictor uses the branch history and LBD without hashing (by concatenating
them). Figure 5.5 presents a possible scheme of the perceptron-based branch
predictor that is using as prediction information local (per-address) last
branch difference (LBD).

Using Last Branch Difference as Prediction Information 87

PC

Table of
Perceptrons

Selected Perceptron

Selected LHR

Local Branch
History Table

GHR

Prediction

LH & LBD GHPC

Table of
Perceptrons

Selected Perceptron

Selected LHR

Local Branch
History Table

GHR

Prediction

LH & LBD GH

Figure 5.5. Perceptron-based branch predictor using the last known local branch
difference.

In Figure 5.5, the Local Branch History Table maintains for each
branch its Local History (LH) and, respectively, the Last Branch Difference
(LBD). The prediction accuracies obtained with this scheme are presented in
Table 5.5.

Bench
GH-LH-
8590w

GH-LH-LBD-
8590w

GH-LH-LBD-
12530w

GH-LH-LBD-
15720w

GH-LH-LBD-
20573w

GH-LH-LBD-
30713w

bzip 76.63% 76.64% 76.67% 76.71% 76.74% 76.77%
gzip 81.29% 81.20% 81.22% 81.23% 81.22% 81.23%
mcf 74.74% 75.00% 74.98% 75.02% 75.00% 75.02%
parser 77.11% 78.00% 78.24% 78.42% 78.56% 78.71%
twolf 76.73% 76.34% 76.53% 76.71% 76.97% 77.24%
Average 77.30% 77.44% 77.53% 77.62% 77.70% 77.79%

Table 5.5. Prediction accuracies of the piecewise linear branch predictor on
unbiased branches, using the local (per-address) LBD as additional prediction

information.

Unfortunately, we have not obtained any improvement with the local LBD
approach opposite to the global LBD approach, the accuracies being even
lower.

6. Designing an Advanced Simulator for
Unbiased Branches Prediction

In modern superscalar microarchitectures that speculatively execute
a great quantity of code, without performing branch prediction, it won’t be
possible to aggressively exploit program’s instruction level parallelism.
Both the architectural and technological complexity of current processors
emphasizes the negative impact on performance due to every branch
misprediction. Due to this importance, branch prediction becomes a core
topic in Computer Architecture curricula. The fast development of
computer science and information technology domains, and of
computer architecture especially, have determined that many software
tools used not far ago in research, to be enhanced with an interactive
graphical interface and to be taught in Introductory Computer
Organization respectively Computer Architecture courses. The lack of
simulators dedicated to branch prediction used in didactical purposes despite
of plenty used in research goals, represents the starting point of this paper.
The main aim of this section consists in identifying the difficult-to-predict
branches, quantifying them at benchmark-level and finding the relevant
information to reduce their numbers. Finally, we evaluate the impact of
these branches on three commonly used prediction context (local, global and
path) and their corresponding predictors ranging from classical two-level
predictors to present-day predictors (neural – Simple Perceptron and Fast
Path-based Perceptron). The developed ABPS (Advanced Branch
Prediction Simulator) simulator provides a wide variety of configuration
options. Beside statistics related to the number of difficult-to-predict
branches, the simulator generates graphical results illustrating the influence
of different simulation parameters (number of entries in prediction table,
history length, etc.) on prediction accuracy, resources usage degree, etc., for
every implemented predictor.

Both the architectural complexity of current processors (deep
pipeline structures – 20 at INTEL Pentium4 and wide width instruction
issue) and technological complexity (higher processing frequency – greater
than 3.3 GHz at same processor) emphasize the negative impact on
performance due to every branch misprediction [Spr94]. Branch instructions
activate at control-flow level generating performance loss by unknowing in

Designing an Advanced Simulator for Unbiased Branches Prediction 89

the instruction fetch stage the branch direction and target. Thus, the modern
architectures should incorporate very efficacious prediction schemes.

6.1. Simulation Methodology

After more than two decades, the researcher from computer science
domain got the conclusion that simulators have become an integral part of
the computer architecture research and design process [Yi06]. Their most
important advantages, comparing with real processors, are low
implementation cost, development time, flexibility and extensibility
allowing the architects to quickly evaluate the performance of a wide range
of architectures and to quantify the efficacy of every enhancement. Besides
its importance proved in computer architecture research field, in the latest
time, simulators have been extensively employed as a valuable pedagogical
tool as they enable students to visualize how microarchitecture components
work and interact [Flo05]. For example, at last important Workshop on
Computer Architecture Education held in conjunction with the 33rd
International Symposium on Computer Architecture (ISCA06 – the best
conference in computer architecture domain in the world), two papers aim at
fundamental topics of computer architecture curricula: processor – cache
interface in a RISC architecture (MIPS) [Pet06] and power and performance
analysis in superscalar out-of-order architecture [Smu06].

In this section we present the implemented ABPS (Advanced Branch
Prediction Simulator), an interactive graphical trace-driven simulator for
teaching branch prediction [Rad07]. Projects designed around ABPS
simulator are used in both undergraduate and graduate level courses at
Computer Architecture at “Lucian Blaga” University of Sibiu to teach
students concepts related to unbiased branch, state of the art branch
predictors, branch prediction constraints and limits of instruction level
parallelism. Our approach in teaching branch prediction represents a
formative necessity since computer architecture is mainly approached in a
descriptive manner. Through our approach students have the opportunities
to be creative / innovative in computer architecture or in other fundamental
research / didactical domains of computer science and information
technology, even in countries not very developed from economical point of
view. Based on highly parameterized developed simulation tools, students
can understand more in depth the theoretical concepts related to branch
prediction constraints, limits of instruction level parallelism. It could be
observed the different benchmarks’ influence on every proposed
architectural innovation.

90 A Systematic Approach to Predict Unbiased Branches

Unfortunately, this version of the simulator uses only an analytical
model to determine the impact of unbiased branch and branch
missprediction on global processing performance [Vin07]. In his model,
related to a superscalar processor, Vintan ignores stalls like cache misses
and bus conflicts focalizing only about the penalty introduced by branch
miss-prediction. In their assignments, students are asked to explore
architecture configurations extending them for optimizing the power,
performance, or both within a given chip area budget (based on other
simulation tools – CACTI, WATTCH [Shi01, Bro00]).The simulator code is
open source and can be found at [ABPS07].

The simulator allows trace-driven simulation on a collection of 17
programs (having 1 million of dynamic branch instructions each) from
different versions of SPEC benchmarks [SPEC]. We use all of the SPEC
CPU2000 integer benchmarks, and all of the SPEC CPU95 integer
benchmarks that are not duplicated in SPEC CPU2000. The benchmarks are
compiled with the CompaQ GEM compiler with the optimization flags -fast
-O4 -arch ev6 [Coh00]. All these benchmarks cover a lot of applications
ranging from compression (text/image) to word processing, from compilers
and architectures to games enhanced with artificial intelligence, etc.

From a pedagogical point of view, the proposed tool benefits the
learning process because it helps students to observe the influence of each
parameter on simulation model. The simulator provides a wider variety of
configuration options. Thus, it can be determined how the prediction
accuracy does vary with input parameters (number of entries in prediction
tables, history length, number of bits for weights representation, threshold
value used for perceptron training, etc). The ABPS simulator assures three
of the features specific to almost high-performance standard simulators: free
availability for use, extensibility and portability. Full inheritance and
polymorphism is used, allowing for ease of extension in the future adding
new functionalities.

6.2. The Functional Kernel of the Simulator

The realized simulator must remove the bottlenecks that limit the
processor performance and search for possible changes (architectural or
optimization techniques) for improving it. Providing a highly parameterized
model for every microarchitectural instance, the performance obtained by
simulation will represent a quick feedback mechanism related to proposed
changes. The simulator execution consists in the following sequential steps:

Designing an Advanced Simulator for Unbiased Branches Prediction 91

1) Configuring the microarchitecture with the input parameters
including the benchmarks.

2) Initialization phase (prediction tables, local/global history registers).
3) Starting the trace processing and computing the simulation metrics.

The mechanism that identifies unbiased branches was already

presented in Chapter 3. The Detector kernel of ABPS finds the unbiased
branches (those that have their polarization index – the percentage of “not
taken” or “taken” branch instances corresponding to a certain context –
lower than a polarization degree, set prior the simulation) and quantifies
their number. Repeating the unbiased branches detection methodology for a
length-ordered set of contexts it could be observed how the number of
unbiased branches decreases.

The prediction process supposes accessing the tables for every
instruction from traces and establishing the prediction function of associated
prediction automaton or perceptron. Every good prediction does increase the
automatons state or perceptron weights, while every misprediction does
decrease the same parameters. The automatons are implemented as
saturating counters and, in the neural predictors’ case, the threshold keeps
from overtraining, permitting the perceptron to adapt quickly at every
changing behavior.

6.3. The Software Design of the ABPS Simulator

The user diagram (Figure 6.1a) illustrates the general user interaction
process with ABPS. A generic user can mainly interact with ABPS in two
ways (not fully distinct):

• Default start – the user starts a simulation using the default input
parameters.

• Custom start (Choose simulation type) – the user chooses:

1.The simulation type – detection or prediction;
2.The benchmarks (Stanford and/or SPEC 2000);
3.The values for the simulation parameters.

Steps 1, 2, 3 can be executed in any order. Either of steps 1 and 3 is not
mandatory. If one of them is not executed, default values are used. Step 2
(choosing the benchmarks) is necessary the first time (initially no traces are
selected for simulation) for both user interaction types. After the three steps

92 A Systematic Approach to Predict Unbiased Branches

presented above, the user can start the simulation process. Both in the
Default start and in the Custom start cases, after the simulation process is
ready, simulation results are shown. At any time the simulation process can
be aborted from the GUI (Graphic User Interface).

Figure 6.1. UML Diagrams – User and Activity perspectives.

The activity diagram (Figure 6.1b) shows a general view for the simulation
process flowing in ABPS:

• Initialization – all simulation parameters are set (traces, simulation
type: detection / prediction, detector / predictor values);

Designing an Advanced Simulator for Unbiased Branches Prediction 93

• Starts simulation – the simulation begins after all the inputs had been
set. The simulation process consists basically in processing each trace
included (in a multithreaded manner);

• Read trace – each trace is processed, branch after branch. Each branch
instruction is fed to the selected detector / predictor. This is done until
all branch instructions (from the selected trace) are processed. During
this, results are accumulated.

• Processing results – after a trace had been processed, the obtained
results are processed in order to compute certain metrics;

• Display results – the results are displayed and the simulation process
stops.

Figure 6.2. Sequence Diagram.

The sequence diagram (Figure 6.2) presents in detail how ABPS performs
the process of detecting unbiased branches. The process starts in the GUI,
where the detection parameters are set. After this initialization, the user can
trigger the detection process, which will be managed by another thread (1:

94 A Systematic Approach to Predict Unbiased Branches

create, st:SimulatorThread). In this way, the GUI will not block itself,
leaving the user with the ability to perform other tasks from ABPS. The
simulation thread will create and start a detection thread (1.1: create,
dt:DetectorThread). The detection thread will manage all the detection
process (1.1.1: Create1, tr:TraceReader). When all the above initializations
were performed, the detection process actually starts (2: startSimulation(),
2.1: run()): the trace used for simulation is processed using the appropriate
detector (see: 2.1.1 – 2.1.6). Finally, the detection thread signals (by
returning the results) the simulation thread that the detection is done (2.2:
Destruct3). In the same manner, the simulation thread signals the GUI
thread (3:Destruct4), which will display the results.

From the user’s point of view it is very necessary a visual friendly
interface, based on menus, butons, dialog boxes, graphical images. The
simulator must be easy to use and the results must be efficiently interpreted
and processed (eventually transferred to some utility application such Excel,
PowerPoint, Internet). The machine model should be “fine-tuned” to remove
redundant or little hardware features and to investigate possible tradeoffs of
performance against the functionality provided.

To run the ABPS simulator, on the host computer the jre-1_5 (or
higher) or jdk-1_5 (or higher) must first installed. ABPS is written in JAVA,
thus is platform independent. For properly use of ABPS simulator it should
be accomplished some system requirements. Thus, it is recommended to
have a processor with at least 1 GHz frequency. Otherwise, due to JVM
(java virtual machine), the simulation time, especially on SPEC2000
benchmarks, risk to become prohibit. The RAM memory recommended is
256Mbytes. Since we can represent on the same chart up to 17 benchmarks
(even 6 bars on each), to have a good view it is required a 1024x768
minimum screen resolution.

The ABPS simulator is organized around a main window that
contains two panels. The left one is used to configure (initialize all
requested parameters) and control simulation. The right panel is based on
two tabs – one that show every simulations’ results in text format, and
another, that permits to generate graphical charts illustrating the influence of
different simulation parameters on metrics like unbiased branches
percentage, prediction accuracy, processing rate. The left panel is divided in
two parts: the upper part contains the available testing programs. The
Remove respectively Add buttons facilitate to remove the selected
benchmark or to add new ones. The user can opt to choose between Stanford
or SPEC benchmarks, single or multiple selections. Any simulation started
will operate exclusively on selected benchmarks. Also, there are two very
expressive buttons that allow selecting or deselecting all benchmarks. The

Designing an Advanced Simulator for Unbiased Branches Prediction 95

lower part of left panel contains two tabs Detector / Predictor, each having
its own configuring parameters. The inputs for Detector are: the global
history length – GH, the local history length – LH, a flag that show if path
information correlation is used (concatenated), and the polarization degree
of each context instance. The Predictor tab contains its own four tabs
specific to each implemented predictor (GAg, PAg, PAp and Perceptron).
The implemented two-level predictors request as inputs parameters: the
number of entries in prediction table, the history length (global / local).
Besides input parameters used by the two-level predictors, the neural
predictors (Simple Perceptron and Fast Path-based Perceptron) need some
additionals: threshold value used for learning algorithm, number of bits for
storing the weights. Each predictor can predict all branches or only unbiased
branches. If the second choice is made the simulator apply first the Detector
phase, hidden for user. After determining the unbiased branches percentage
the performance loss can be computed comparatively with an equivalent
multiple instruction issue processor having an ideal branch predictor.

Figure 6.3. ABPS simulator – unbiased branches detection.

If the user chooses from Configuration panel the Detector tab and in the
Results panel only simple execution (Simulate buton), among the simulation
results a list of unbiased branches, in their certain contexts, does occure.
This list could be saved (in text or csv format) for further analysis between

96 A Systematic Approach to Predict Unbiased Branches

different unbiased branches lists obtained when the contexts length is
extended. An important result is the unbiased branches percentage from the
tested benchmarks. The students can see how this percentage does vary
when the context length changes. Figure 6.3 shows the simulation results
when the Detector tab was selected.

Figure 6.4. ABPS simulator – variation of prediction accuracy with global history

length.

If the user selected from Configuration panel the Predictors /
Perceptron tab (Simple or Fast Path-based) and in the Results panel only
simple execution (not charts generating), the simulation results consist in
four important metrics. The prediction accuracy is the number of correct
predictions divided to total number of dynamic branches. We compute also
a confidence metric that represents the total cases when the prediction was
correct and the perceptron did not need to be trained (the magnitude of the
perceptron output was greater than the threshold), divided to total number of
correct predictions (therefore, considering a trivial threshold equal with 0).
While the first two have impact on processor’s performance, the next two
metrics have direct influence on transistors’ budget and integration area (the
number of perceptrons used in the prediction process and respectively the
saturation degree of the perceptrons). The saturation degree represents the
percentage of cases when the weights of perceptrons cannot be increased /

Designing an Advanced Simulator for Unbiased Branches Prediction 97

decreased because they are saturated. If the last two metrics are quite low, it
means that the perceptrons are underused. The prediction accuracy and the
usage degree of prediction table are also computed in the case of two-level
predictors.

The Charts tab offers the possibility to illustrate graphical simulation
results. From the two listboxes the user can select which metrics (from those
explained earlier) to be used and which input parameter to be varied on all
selected benchmarks. An interesting chart shows the Issue Rate (IR) relative
speedup obtained by growing the context length. We used the formula
[IR(L)–IR(16)]/IR(16), for computing IR relative speedup, where L is the
context’s length, L∈{20, 24, 28, 32}). The last group of columns represents
the average (or geometric / harmonic mean). The chart type may be Bar or
Line. The chart can be saved in png format just by clicking on SaveChart
button. Figure 6.4 illustrates how the prediction accuracy does vary with the
global history length when the Fast Path-based Perceptron predictor is used
on all Stanford benchmarks.

7. Conclusions and Further Work

Based on laborious simulations we showed that the percentages of
difficult branches are quite significant (at average between 6% and 24%,
depending on the different used contexts and their lengths). The simulations
also show that the path is relevant for better polarization rate and prediction
accuracy only in the case of short contexts. As Figures 3.5 and 3.6 suggest,
our conclusion is that despite some branches are path-correlated, long
history contexts (local and global) approximate well the path information. In
other words, sufficient long history contexts might be viewed as a good
“compression” of the most complete path information. In our further work,
we’ll try to reduce the path information extracting and using only the most
important bits. Thus, the path information could be built using only a part of
the branch address instead of all the 32 bits of the complete PC.

Therefore, it is obvious that for the unbiased branches identified in
[Gel06, Vin06] the prediction information used by the present-day branch
predictors (local/global correlations and path information), is not always
sufficiently relevant and, therefore, these branches cannot be accurately
predicted. Using the perceptron predictor we measured on these unbiased
branches an average prediction accuracy of only 73.46% (and 92.58% on all
branches). We also evaluated the Frankenpredictor [Loh05a], the O-GEHL
[Sez05], and the Piecewise Linear Branch Predictor [Jim05] on unbiased
branches, but the prediction accuracy was still low despite these predictors
are using path-based information too. Using the Piecewise Linear Branch
Predictor we obtained a prediction accuracy of 77.30% on the unbiased
branches (94.92% on all branches) from the SPEC2000 benchmarks.
Therefore, we introduced new prediction information, named branch
difference history, representing the history of branch conditions’ signs. Our
first goal was to exploit the correlation existing between the history of
conditions’ signs (negative, zero or positive) encountered by a certain
branch instruction and the next condition’s sign corresponding to that
branch. If the condition sign is predictable, the branch’s behavior is
predictable too because branch’s output is deterministically correlated with
the condition’s sign.

Thus, we implemented a local branch difference predictor using the
Prediction by Partial Matching (PPM) algorithm. We determined through
simulations that the optimal configuration of the predictor consists in a

Conclusions and Further Work 99

Branch Difference History Table with 256 entries, a history length of 24
values, and a pattern length of 3. We obtained with this scheme on the
unbiased branches an average branch difference prediction accuracy of
68.60% and a final branch prediction accuracy of 71.76% (90.55% on all
branches). However, when we used a threshold of 7, we obtained a final
branch prediction accuracy of 79.69% on unbiased branches (and 96.43% on
all branches). Our combined global and local approach associates to each
global difference history pattern its own BDHT. Evaluating this scheme on
unbiased branches, we obtained a final branch prediction accuracy of
71.54% (92.33% on all branches) without threshold, and, respectively,
81.25% (97.44% on all branches) with a threshold of 7. Finally, with the
branch difference prediction scheme that combines multiple partial matches,
we obtained a final branch prediction accuracy of 72.24% on the unbiased
branches (and 91.59% on all branches), without threshold.

Further we show that the last branch condition is more efficient than
the path information: it decreased the percentage of unbiased branches for
all evaluated context lengths. Therefore we used this new prediction
information in some state-of-the-art branch predictors. Unfortunately, the
improvement obtained using the LBD entirely (32 bits), in terms of
prediction accuracy, is not significant.

Finally, we presented our ABPS simulator. Repeating the detection
methodology for a length-ordered set of contexts it could be observed how
the number of unbiased branches decreased, in the tested benchmarks.
Another facility of ABPS consists in running a plenty of branch predictors,
from classical two-level up to neural state-of-the art, having the possibility
of varying the most important parameters and illustrating the graphical
results of the simulations. Also important, our simulator permits the
migration of some mature actual scientific problems to students’
understanding level.
 In conclusion the average prediction accuracy remains still low on
unbiased branches. During this work, we showed that difficult branches
were efficiently identified in [Gel06, Vin06]. Furthermore, the accurate
prediction of these unbiased branches constitutes an open problem, since
each percent of unbiased branches decisively reduces prediction accuracy.
As a consequence, these unbiased branches might define a fundamental
limit in branch prediction research.

100 A Systematic Approach to Predict Unbiased Branches

Further Work

 We consider that the use of more prediction contexts (some HLL
code information) is required to further improve prediction accuracies. In
order to efficiently use such information we consider it will be necessary to
have a significant amount of compiler support. Another alternative could be
to pursue the concepts of micro-threading where small fragments of code
are executed concurrently and the branch problem is no longer a major
concern. Also, we want to explore the importance of unbiased branch
prediction problem in Chip Multi-Processor (CMP) architectures.

For further work we are concerned to the necessity of an efficient
hardware branch predictor from power consumption and performance
criterions, within a given chip area budget. Very high prediction accuracy is
necessary, because taking into account the multiple-instruction-issue
processors characteristics as pipeline depth or issue rates, even a prediction
miss rate of a few percent involves a substantial performance loss. Also, we
intend to extend the ABPS simulator with functional network
characteristics, allowing a distributed simulation process in a client-server
manner, useful due to the time consuming simulations.
 Another objective is to develop a complex architecture that
selectively anticipates the values produced by high-latency instructions. We
will focalize on multiply, division and loads that access with miss the L2
data cache. The DIV/MUL instructions (non-selective approach) will be
solved by an Instruction Reuse scheme, without prediction. The critical load
instructions (loads with miss in both cache levels – selective approach) will
be solved by a reuse scheme or, if they are not reusable, through prediction
(a simple prediction scheme will be used, e.g. last value predictor). We will
evaluate this complex architecture and compare it with a blocked
multithreading architecture.

References

[Aam03] Aamer M., Lux K., Mistry R., Mulholland B., Efficiency of Pre-
Computed Branches, Technical Report, University of Pennsylvania, USA,
2003.

[ABPS07] Advanced Branch Prediction Simulator,
http://webspace.ulbsibiu.ro/adrian.florea/html/simulatoare/simulatoare.htm.

[Ara01] Aragón J. L., González J., García J. M., González A., Selective
Branch Prediction Reversal by Correlating with Data Values and Control
Flow, Proceedings of the International Conference on Computer Design:
VLSI in Computers & Processors, 2001.

[Bro00] Brooks D., Tiwari V., Martonosi M., Wattch: a framework for
architectural-level power analysis and optimizations. In Annual
International Symposium on Computer Architecture, pages 83–94, 2000.

[CBP04] The First Championship Branch Prediction Competition (CBP-1),
http://www.jilp.org/cbp, 2004.

[CBP06] The Second Championship Branch Prediction Competition (CBP-
2), http://www.jilp.org/cbp, 2006.

[Cha94] Chang P.-Y., Hao E., Yeh T.-Y., Patt Y. N., Branch Classification:
a New Mechanism for Improving Branch Predictor Performance,
Proceedings of the 27th International Symposium on Microarchitecture, San
Jose, California, 1994.

[Cha02] Chappell R., Tseng F., Yoaz A., Patt Y., Difficult-Path Branch
Prediction Using Subordinate Microthreads, The 29th Annual International
Symposia on Computer Architecture, Alaska, USA, May 2002.

[Cha03] Chaver D., Pinuel L., Prieto M., Tirado F., Huang M., Branch
Prediction On Demand: an Energy-Efficient Solution, ISLPED’03
Conference, Seoul, Korea, August 2003.

102 A Systematic Approach to Predict Unbiased Branches

[Che03] Chen L., Dropsho S., Albonesi D.H., Dynamic Data Dependence
Tracking and its Application to Branch Prediction, The 9th International
Symposium on High-Performance Computer Architecture, February 2003.

[Coh00] Cohn R., Lowney P. G., Design and Analysis of Profile-Based
Optimization in Compaq’s Compilation Tools for Alpha, Journal of
Instruction-Level Parallelism nr 3, 2000.

[Con04] Constantinides K., Sazeides Y., A Hardware-Based Method for
Dynamically Detecting Instruction-Isomorphism and its Application to
Branch Prediction, The 2nd Value Prediction and Value-Based Optimization
Workshop, Boston, Massachusetts, October 2004.

[Des04] Desmet V., Eeckhout L., De Bosschere K., Evaluation of the Gini-
index for Studying Branch Prediction Features. Proceedings of the 6th
International Conference on Computing Anticipatory Systems (CASYS),
AIP Conference Proceedings, Vol. 718, 2004.

[Des06] Desmet V., On the Systematic Design of Cost-Effective Branch
Prediction, PhD Thesis, Ghent University, Belgium, 2006.

[Ega03] Egan C., Steven G., Quick P., Anguera R., Vintan L., Two-Level
Branch Prediction using Neural Networks, Journal of Systems Architecture,
vol. 49, issues 12-15, Elsevier, December 2003.

[Flo05] Florea A., The dynamic values prediction in the next generation
microprocessors, MatrixRom Publishing House, Bucharest, 2005.

[Flo07] Florea A., Radu C., Calborean H., Crapciu A., Gellert A., Vintan L.,
Designing an Advanced Simulator for Unbiased Branches’ Prediction, The
9th International Symposium on Automatic Control and Computer Science,
Iasi, November 2007.

[Gao06] Gao H., Zhou H., PMPM: Prediction by Combining Multiple
Partial Matches, The 2nd Journal of Instruction-Level Parallelism
Championship Branch Prediction Competition (CBP-2), Orlando, Florida,
USA, December 2006.

[Gel06] Gellert A., Prediction Methods Integrated into Advanced
Architectures, Technical Report, Computer Science Department, "Lucian
Blaga" University of Sibiu, January 2006.

References 103

[Gel07a] Gellert A., Integration of Some Advanced Prediction Methods into
Speculative Computing Systems, Technical Report, Computer Science
Department, "Lucian Blaga" University of Sibiu, March 2007.

[Gel07b] Gellert A., Florea A., Vintan M., Egan C., Vintan L., Unbiased
Branches: An Open Problem, Twelfth Asia-Pacific Computer Systems
Architecture Conference (ACSAC’07), Seoul, Korea, August 2007.

[Gon99] González J., González A., Control-Flow Speculation through
Value Prediction for Superscalar Processors, International Conference on
Parallel Architecture and Compilation Techniques, 1999.

[Gon01] González J., González A., Control-Flow Speculation through
Value Prediction, IEEE Transactions on Computers, Vol. 50, No. 12,
December 2001.

[Hei99a] Heil T., Smith Z., Smith J.E., Using Data Values to Predict
Branches, Proceedings of the 26th Annual International Symposium on
Computer Architecture, 1999.

[Hei99b] Heil T.H., Smith Z., Smith J.E., Improving Branch Predictors by
Correlating on Data Values, The 32nd International Symposium on
Microarchitecture, November 1999.

[Jim01] Jiménez D., Lin C., Dynamic Branch Prediction with Perceptrons,
In Proceedings of the Seventh International Symposium on High
Performance Computer Architecture (HPCA-7), January 2001.

[Jim02] Jiménez D., Lin C., Neural Methods for Dynamic Branch
Prediction, ACM Transactions on Computer Systems, Vol. 20, New York,
USA, November 2002.

[Jim03] Jiménez D., Fast Path-Based Neural Branch Prediction,
Proceedings of the 36th Annual International Symposium on
Microarchitecture, December 2003.

[Jim05] Jiménez D., Idealized Piecewise Linear Branch Prediction, Journal
of Instruction-Level Parallelism, April 2005.

104 A Systematic Approach to Predict Unbiased Branches

[Loh05a] Loh G. H., Deconstructing the Frankenpredictor for
Implementable Branch Predictors, Journal of Instruction-Level Parallelism,
April 2005.

[Loh05b] Loh G. H., Jiménez D., A Simple Divide-and-Conquer Approach
for Neural-Class Branch Prediction, Proceedings of the 14th International
Conference on Parallel Architectures and Compilation Techniques (PACT),
St. Louis, MO, USA, September 2005.

[Loh05c] Loh G. H., Jiménez D., Reducing the Power and Complexity of
Path-Based Neural Branch Prediction, 5th Workshop on Complexity
Effective Design (WCED5), Madison, WI, USA, June 2005.

[Mah94] Mahlke S. A., Hank R. E., Bringmann R. A., Gyllenhaal J. C.,
Gallagher D. M., Hwu W.-M. W., Characterizing the Impact of Predicated
Execution on Branch Prediction, Proceedings of the 27th International
Symposium on Microarchitecture, San Jose, California, December 1994.

[McFar93] McFarling S., Combining Branch Predictors, WRL Technical
Note TN-36, Digital Equipment Corporation, June 1993.

[Mud96] Mudge T. N., Chen I. K., Coffey J. T., Limits to Branch
Prediction, Technical Report, Electrical Engineering and Computer Science
Department, University of Michigan, Ann Arbor, Michigan, USA, January
1996.

[Nair95] Nair R., Dynamic Path-Based Branch Correlation, IEEE
Proceedings of MICRO-28, 1995.

[Oan06] Oancea M., Gellert A., Florea A., Vintan L., Analyzing Branch
Prediction Contexts Influence, Advanced Computer Architecture and
Compilation for Embedded Systems, (ACACES 2006), ISBN 90 382 0981
9, pages 5-8, L’Aquila, Italy, July 2006.

[Pet06] Petit S., Tomás N., Sahuquillo J., Pont A., An Execution-Driven
Simulation Tool for Teaching Cache Memories in Introductory Computer
Organization Courses, Workshop on Computer Architecture Education,
Boston, 2006.

References 105

[Rab89] Rabiner L. R., A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition, Proceedings of the IEEE, Vol 77, No.
2, February 1989.

[Rad07] Radu C., Calborean H., Crapciu A., Gellert A., Florea A., An
Interactive Graphical Trace-Driven Simulator for Teaching Branch
Prediction in Computer Architecture, The 6th EUROSIM Congress on
Modelling and Simulation, Ljubljana, Slovenia, September 2007.

[Rot99] Roth A., Moshovos A., Sohi G., Improving Virtual Function Call
Target Prediction via Dependence-Based Pre-Computation, Proceedings of
International Conference on Supercomputing, 1999.

[Saz97] Sazeides Y., Smith J. E., The Predictability of Data Values,
Proceedings of the 30th Annual International Symposium on
Microarchitecture, December 1997.

[Sez02] Seznec A., Felix S., Krishnan V., Sazeides Y., Design Tradeoffs for
the Alpha EV8 Conditional Branch Predictor, Proceedings of the 29th
International Symposium on Computer Architecture, Anchorage, AK, USA,
May 2002.

[Sez05] Seznec A., Genesis of the O-GEHL branch predictor, Journal of
Instruction-Level Parallelism, April 2005.

[Shi01] Shivakumar P., Jouppi N. P., CACTI 3.0: An Integrated Cache
Timing, Power, and Area Model, WRL Technical Report 2001/2.

[Sim] Simplescalar, The SimpleSim Tool Set,
ftp://ftp.cs.wisc.edu/pub/sohi/Code/simplescalar.

[Sin06] Singer J., Brown G., Return Value Prediction Meets Information
Theory, The 4th Workshop on Quantitative Aspects of Programming
Languages, Vienna, Austria, April 2006.

[Smi98] Smith Z., Using Data Values to Aid Branch-Prediction, MSc
Thesis, Wisconsin-Madison, USA, December 1998.

[Smu06] Smullen C.W., Taha T.M., PSATSim: An Interactive Graphical
Superscalar Architecture Simulator for Power and Performance Analysis,
Workshop on Computer Architecture Education, Boston, 2006.

106 A Systematic Approach to Predict Unbiased Branches

[SPEC] SPEC2000, The SPEC benchmark programs, http://www.spec.org.

[Spr94] Sprangle E., Carmean D., Increasing processor performance by
implementing deeper pipelines, 29th International Symposium on Computer
Architecture, Anchorage, Alaska, May 25 - 29, 2002.

[Sri06] Srinivasan R., Frachtenberg E., Lubeck O., Pakin S., Cook J.,
Neuro-PPM Branch Prediction, The 2nd Journal of Instruction-Level
Parallelism Championship Branch Prediction Competition (CBP-2),
Orlando, Florida, USA, December 2006.

[Ste97] Steven G.B., Christian B., Collins R., Potter R.D., Steven F.L., A
Superscalar Architecture to Exploit Instruction Level Parallelism,
Microprocessors and Microsystems, 1997.

[Tar05] Tarjan D., Skadron K., Merging Path and GshareIndexing in
Perceptron Branch Prediction, ACM Transactions on Architecture and
Code Optimization, Vol. 2, No. 3, September 2005.

[Tho03] Thomas R., Franklin M., Wilkerson C., Stark J., Improving Branch
Prediction by Dynamic Dataflow-based Identification of Correlated
Branches from a Large Global History, Proceedings of the 30th International
Symposium on Computer Architecture, June 2003.

[Tho01] Thomas R., Franklin M., Using Dataflow Based Context for
Accurate Value Prediction, Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques, 2001.

[Vin99a] Vintan L., Iridon M., Towards a High Performance Neural
Branch Predictor, International Joint Conference on Neural Networks,
Washington DC, USA, July 1999.

[Vin99b] Vintan L., Egan C., Extending Correlation in Branch Prediction
Schemes, International Euromicro’99 Conference, Italy, September 1999.

[Vin03] Vintan L., Sbera M., Mihu I.Z., Florea A., An Alternative to Branch
Prediction: Pre-Computed Branches, ACM SIGARCH Computer
Architecture News, Vol.31, Issue 3, ACM Press, NY, USA, June 2003.

References 107

[Vin05] Vintan L., Florea A., Gellert A, Focalising Dynamic Value
Prediction to CPU’s Context, IEE Proceedings. Computers & Digital
Techniques, Vol. 152, No. 4, Stevenage, UK, July 2005.

[Vin06] Vintan L., Gellert A., Florea A., Oancea M., Egan C.,
Understanding Prediction Limits through Unbiased Branches, Eleventh
Asia-Pacific Computer Systems Architecture Conference (ACSAC’06),
Shanghai, China, September 2006.

[Vin07] Vintan L., Prediction Techniques in Advanced Computing
Architectures (in English), MatrixRom Publishing House, Bucharest, 2007.

[Wan97] Wang K., Franklin M., Highly Accurate Data Value Prediction
using Hybrid Predictors, Proceedings of the 30th Annual ACM/IEEE
International Symposium on Microarchitecture, December 1997.

[Yeh92] Yeh T.-Y., Patt Y. N., Alternative Implementations of Two-Level
Adaptive Branch Prediction, Proceedings of the 19th Annual International
Symposium on Computer Architecture, Gold Coast, Australia, May 1992.

[Yi06] Yi J.J., Lilja D.J., Simulation of Computer Architectures: Simulators,
Benchmarks, Methodologies and Recommendations, IEEE Transactions on
Computers, Vol. 55, No. 3, March 2006, pp. 268-280.

Glossary

Benchmark: is a program used for evaluations. In this work we used the
SPEC2000 benchmark suite and the CBP-1 traces.

Biased branch: mostly always taken or mostly always not taken branch
(mostly-one-direction branch). The behavior (taken/not taken) of a
biased branch is polarized.

Biased branch context: the branch behavior (taken/not taken) is polarized
for that certain context (local branch history, global history, etc.).

Blocked multithreading: a multithreading architecture which switches
threads at high latency instructions (e.g. critical loads).

Branch difference: represents the value or the sign of the difference
between the branch’s inputs. Regarding the sign of the inputs’
difference, a value of 1 indicates that the corresponding branch
difference is positive, a value of -1 indicates a negative difference, while
a 0 indicates equality between the branch’s inputs.

Branch difference predictor: the branch outcomes are predicted based on
branch difference histories.

Branch polarization: measured through the polarization index (P).
Branch prediction: is the prediction of the direction (taken/not taken)

and/or the target address (next PC) of a branch instruction.
Complete-PPM predictor: see Prediction by Partial Matching (PPM).
Confidence automaton: saturated counter that indicates the confidence of a

certain prediction. The prediction is generated only if the confidence
automaton is in a predictable state.

Context: the context of length p represents the last p elements from the
correlation information used in order to make a prediction. In the case of
person movement prediction the correlation information is the room
history, and a context of length p consists in the last p visited rooms. In
the case of branch prediction the correlation information is the branch
history (e.g. local or global branch history), and a context of length p
consists in the last p bits from the branch history.

Context instance: is a dynamic branch executed in the respective context.
Critical load: a load instruction with miss in both cache levels.
Distribution (index): the distribution index of a certain branch context is

computed as follows.

Glossary 109

⎪⎩

⎪
⎨

⎧

>
⋅

=
=

0,
),min(2

0,0
)(

t
t

t

i n
TNT

n
n

SD , where

• nt = the number of branch outcome transitions, from taken to not
taken and vice-versa, in context Si;

•),min(2 TNT⋅ = maximum number of possible transitions;
• k = number of distinct contexts, pk 2≤ , where p is the length of the

binary context;
• if kiSD i ...,,2,1)(,1)(=∀= , then the behavior of the branch in

context Si is “contradictory” (the most unfavorable case), and thus its
learning is impossible;

• if kiSD i ...,,2,1)(,0)(=∀= , then the behavior of the branch in
context Si is constant (the most favorable case), and it can be
learned.

Dynamic branch: is an instance of a static branch during program
execution.

Dynamic branch prediction: the branches are predicted with hardware
techniques.

Dynamic learning: is the run-time prediction process when the outputs of
the predictor are used to adjust the prediction structures and respectively
to generate predictions.

Feature (set): is the binary context on p bits of prediction information such
as local history, global history or path. Each static branch finally has
associated k dynamic contexts in which it can appear (pk 2≤).

Gain: is the factor which gives the improvement of the quality.
Last branch difference (LBD): a branch condition difference consists in

the difference of the operand values implied in the last branch condition.
The global LBD is the last known branch condition difference. The local
LBD is the last per-address branch condition difference.

Markov chain: in the case of a first order Markov chain the probabilistic
description is truncated to just the current and predecessor state.

][...],,[121 itjtktitjt SqSqPSqSqSqP ====== −−− , where tq is
the state at time t. Thus, for a first order Markov chain with N states, the
set of transition probabilities between states Si and Sj is }{ ijaA = , where

][1 itjtij SqSqPa === − , Nji ≤≤ ,1 , having the properties 0≥ija

110 A Systematic Approach to Predict Unbiased Branches

and 1
1

=∑
=

N

j
ija . For a Markov chain of order R the probabilistic

description is truncated to the current and R previous states.
Markov predictor: the prediction is generated based on the state transition

probabilities of a Markov chain.
Polarization (index): the polarization index (P) of a certain branch context

is computed as follows.

⎩
⎨
⎧

<
≥

==
5.0,
5.0,

),max()(
01

00
10 ff

ff
ffSP i , where

• { }kSSSS ...,,, 21= = set of distinct contexts that appear during all
branch instances;

• k = number of distinct contexts, pk 2≤ , where p is the length of the
binary context;

•
NTT

NTf
NTT

Tf
+

=
+

= 10 , , NT = number of “not taken” branch

instances corresponding to context Si, T = number of “taken” branch
instances corresponding to context Si, ki ...,,2,1)(=∀ , and
obviously 110 =+ ff ;

• if kiSP i ...,,2,1)(,1)(=∀= , then the context iS is completely
biased (100%), and thus, the afferent branch is highly predictable;

• if kiSP i ...,,2,1)(,5.0)(=∀= , then the context iS is totally
unbiased, and thus, the afferent branch is not predictable if the taken
and not taken outcomes are shuffled.

Prediction accuracy: the percentage or ratio of correct predictions reported
to the total number of predictions.

Prediction by Partial Matching (PPM): is a context-based prediction
algorithm. The PPM predictor contains a set of simple Markov
predictors. It is predicted the value that followed the context with the
highest frequency. In the case of complete-PPM predictor, if a prediction
cannot be generated with the Markov predictor of order k, then the
pattern length is shortened and the Markov predictor of order k-1 tries to
predict and so on.

Speculative execution: instruction execution based on predicted values or
predicted branch outcomes.

Static branch: a certain branch instruction from a program.

Glossary 111

Static branch prediction: the branches are predicted statically by the
compiler. Static branch predictors are used in processors where the
expectation is that branch behavior is highly predictable at compile-time.

Static learning: means that before effective run-time prediction process, the
predictor is trained based on some patterns. In the static learning process
the outputs of the predictor are used only to adjust the prediction
structures.

Unbiased branch: a branch whose behavior (taken/not taken) is not
sufficiently polarized.

Unbiased branch context: the branch behavior (taken/not taken) is not
sufficiently polarized for that certain context (local branch history,
global history, etc.).

