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1. Introduction into Unbiased Branches 
Challenge 

Two trends – technological and architectural (conceptual) – are 
further increasing the importance of branch prediction. From technological 
point of view, modern high-end processors use an array of tables for branch 
direction and target prediction [Sez02]. These tables are quite large in size 
(352K bits for the direction predictor in Alpha EV8) and they are accessed 
every cycle resulting in significant energy consumption – sometimes more 
than 10% of the total chip power [Cha03]. 

From an architectural point of view, processors are getting wider and 
pipelines are getting deeper, allowing more aggressive clock rates in order 
to improve overall performance. A very high frequency will determine a 
very short clock cycle and the prediction cannot be delivered in a single 
clock cycle or maximum two cycles which is the prediction latency in the 
actual commercial processors (see Alpha 21264 branch predictor) [Jim02]. 
Also a very wide superscalar processor can suffer from performance point 
of view in the misprediction case when the CPU context must be recovered 
and the correct paths have to be (re)issued. As an example, the performance 
of the Pentium 4 equivalent processor degrades by 0.45% per additional 
misprediction cycle, and therefore the overall performance is very sensitive 
to branch prediction. Taking into account that the average number of 
instructions executed per cycle (IPC) grows non-linearly with the prediction 
accuracy [Yeh92], it is very important to further increase the accuracy 
achieved by present-day branch predictors.  
  The quality of a prediction model is highly dependent on the quality 
of the available data. Especially the choice of the features to base the 
prediction on is important. The vast majority of branch prediction 
approaches rely on usage of a greater number of input features (such as 
branch address, global or local branch history, etc.) without taking into 
account the real cause (unbiased branches) that produce a lower accuracy 
and implicit lower performance. 

In this work we prove that a branch in a certain dynamic context is 
difficult predictable if it is unbiased and the outcomes are shuffled. In other 
words, a dynamic branch instruction is unpredictable with a given prediction 
information if it is unbiased in the considered dynamic context and the 
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behavior in that certain context cannot be modeled through Markov 
stochastic processes of any order. Based on laborious simulations we show 
that the percentages of difficult branches are quite significant (at average 
between 6% and 24%, depending on the different used prediction contexts 
and their lengths), giving a new research challenge and a useful niche for 
further research. Present-day branch predictors are using limited prediction 
information (local and global correlation and path information). We’ll show 
that for some branches this information is not always sufficiently relevant 
and, therefore, these branches cannot be accurately predicted using present-
day predictors. Consequently, we think it is important to find other relevant 
information that is determining branches’ behavior in order to use it for 
designing better predictors. In our opinion such relevant prediction 
information could consist in branch’s condition sign (positive, negative or 
zero). More precisely, a certain branch associated with its condition’s sign 
value (+, -, 0) will be perfectly biased. If its condition sign will be 
predictable, the branch’s behavior will be predictable too because the 
branch’s output is deterministically correlated with the condition’s sign. 
Thus, it appears rationale trying to predict current branch’s condition sign 
based on the local/global condition histories. We can also use the last branch 
condition as new prediction information in some state-of-the-art branch 
predictors in order to increase prediction accuracy. 

This booklet is organized as follows. Chapter 2 gives a brief 
overview of related work. Chapter 3 describes our methodology of finding 
difficult predictable branches. Chapter 4 describes the present-day branch 
predictors used in this work and continues with some proposed condition-
history-based branch prediction methods. Chapter 5 presents some modified 
present-day branch predictors that use the last known branch condition as 
prediction information. Chapter 6 presents an advanced simulator for 
unbiased branches’ prediction. Finally, Chapter 7 concludes the booklet and 
suggests directions for further work. 
 
 
 
 
 
 



2. Related Work 

Representative hardware and compiler-based branch prediction 
methods have been developed in recent years in order to increase 
instruction-level parallelism. Branch prediction is an important component 
of modern microarchitectures, despite of their deeper pipelines that 
increased misprediction latency. Therefore, improvements in terms of 
branch prediction accuracy are essential in order to avoid the penalties of 
mispredictions. In this section we presented only the works that are most 
closely related to the proposed approach. 

Chang et al., introduced in [Cha94] a mechanism called branch 
classification in order to enhance branch prediction accuracy by classifying 
branches into groups of highly biased (mostly-one-direction branches) 
respectively unbiased branches, and used this information to reduce the 
conflict between branches with different classifications. In other words, they 
proposed a method that classifies branches according to their dynamic taken 
rate and assigns branches from each class to different predictors. The class 
of branches is determined by their overall dynamic taken rate collected 
during program profiling. With their branch classification model they 
showed that using a short history for the biased branches and a long history 
for the unbiased branches improves the performance of the global history 
Two-Level Adaptive Branch predictors. In contrast to our work, the authors 
are classifying branches irrespective of their attached context (local and 
global histories, etc.) involving thus an inefficient approach. Due to this 
rough classification the corresponding predictors are not optimally chosen, 
simply because it is impossible to find an optimal predictor for some 
classes. 

Mahlke et al., proposed in [Mah94] a compiler technique that uses 
predicated execution support to eliminate branches from an instruction 
stream. Predicated execution refers to the conditional execution of an 
instruction based on the value of a boolean source operand – the predicate of 
the instruction. This architectural support allows the compiler to convert 
conditional branches into predicate defining instructions, and instructions 
along alternative paths of each branch into predicated instructions. 
Predicated instructions are fetched regardless of their predicate value. Thus, 
instructions whose predicate value is true are executed normally, while 
instructions whose predicate is false are nullified. Predicated execution 
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offers the opportunity to improve branch handling in superscalar processors. 
Eliminating frequently mispredicted branches may lead to a substantial 
reduction in branch prediction misses, and as a result, the performance 
penalties associated with the eliminated branches are removed. The authors 
use compiler support for predicated execution based on a structure called 
hyperblock. The goal of hyperblock formation is to group basic blocks 
eliminating unbiased branches and leaving highly biased branches. They 
selected the unbiased branches based on taken frequency distributions. Their 
experimental results show that leaving only highly biased branches with 
predicated execution support, the prediction accuracy is higher. 

Nair has first introduced dynamic branch prediction based on path 
correlation [Nair95]. The basic observation behind both pattern-based and 
path-based correlation is that some branches can be more accurately 
predicted if the path leading to these branches is known. Path-based 
correlation attempts to overcome the performance limitations of pattern-
based correlation arising from pattern aliasing situations, where knowledge 
of the path leading to a branch results in higher predictability than 
knowledge of the pattern of branch outcomes along the path. Nair proposed 
a hardware scheme which records the path leading to a conditional branch in 
order to predict the outcome of the branch instruction more accurately. He 
adapted a pattern-based correlation scheme, replacing the pattern history 
register with a g-bit path history register which encodes the target addresses 
of the immediately preceding p conditional branches. Ideally, all bits of the 
target address should be used to ensure that each sequence of p addresses 
has a unique representation in the register. Since such schemes are too 
expansive to be implemented in hardware, Nair used a simplified scheme 
which uses a subset of q bits from each of the target addresses. Limiting the 
number of bits from the branch address could result path aliasing – the 
inability of the predictor to distinguish two distinct paths leading to a 
branch. Unfortunately, this path correlation scheme does not show any 
significant improvement over pattern-based correlation [Nair95]. Nair’s 
explanation for this is that for a fixed amount of hardware in the prediction 
tables, path-based correlation uses a smaller history than pattern-based 
correlation because the same number of bits represents fewer basic blocks in 
the path history register than branch outcomes in the pattern history register. 
Despite this, path based correlation is better than pattern-based correlation 
on some benchmarks – especially when history information is periodically 
destroyed due to context switches –, indicating that with a better hashing 
scheme the pattern correlation schemes could be outperformed. 

A quite similar approach is proposed by Vintan and Egan in 
[Vin99b] – their paper represents the genesis of this work. The authors 
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illustrated, based on examples, how a longer history could influence the 
behavior of a branch (changing it from unbiased to biased). They also 
showed that path information could also reduce the branch’s entropy. The 
main contribution of this paper is related to the prediction accuracy gain 
obtained by extending the correlation information available in the 
instruction fetch stage. Based on trace-driven simulation the authors proved 
for relatively short global branch history patterns, that a path-based 
predictor overcomes a pattern-based predictor at the same hardware budget. 
The main difference, comparing with Nair’s approach, is that here the 
authors are using both the path and respectively the history information in 
order to do better predictions. They show that a scheme based on this 
principle performs better than a classical GAp scheme, at the same level of 
complexity. Particularly useful information has been gleaned regarding the 
interaction between path length and the number of replacements required in 
the PHT. 

Dynamic branch prediction with neural methods, was first 
introduced by Vintan [Vin99a, Ega03], and further developed by Jiménez 
[Jim01]. Despite the neural branch predictor’s ability to achieve very high 
prediction rates and to exploit deep correlations at linear costs, the 
associated complexity due to latency, large quantity of adder circuits, area 
and power are still obstacles to the industrial adoption of this technique. 
Anyway, the neural methods seem to be successfully for future 
microprocessors taking into account that they are already implemented in 
Intel’s IA-64 simulators. The path-based neural predictors [Jim03] improve 
the instructions-per-cycle (IPC) rate of an aggressively clocked 
microarchitecture by 16% over the original perceptron predictor [Jim01]. A 
branch may be linearly inseparable as a whole, but it may be piecewise 
linearly separable with respect to the distinct associated program paths. 
More precisely, the path-based neural predictor combines path history with 
pattern history, resulting superior learning skills to those of a neural 
predictor that relies only on pattern history. The prediction latency of path-
based neural predictors is lower, because the computation of the output can 
begin in advance of the prediction, each step being processed as soon as a 
new element of the path is executed. Thus, the vector of weights used to 
generate prediction, is selected according to the path leading up to a branch 
– based on all branch addresses from that path – rather than according to the 
current branch address alone as the original perceptron does. This selection 
mechanism improves significantly the prediction accuracy, because, due to 
the path information used in the prediction process, the predictor is able to 
exploit the correlation between the output of the branch being predicted and 
the path leading up to that branch. To generate a prediction, the correlations 
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of each component of the path are aggregated. This aggregation is a linear 
function of the correlations for that path. Since many paths are leading to a 
branch, there are many different linear functions for that branch, and they 
form a piecewise-linear surface separating paths that lead to predicted taken 
branches from paths that lead to predicted not taken branches. The 
piecewise linear branch prediction [Jim05], is a generalization of neural 
branch prediction [Jim01], which uses a single linear function for a given 
branch, and respectively path-based neural branch prediction [Jim03], which 
uses a single global piecewise-linear function to predict all branches. The 
piecewise linear branch predictors use a piecewise-linear function for a 
given branch, exploiting in this way different paths that lead to the same 
branch in order to predict otherwise linearly inseparable branches. The 
piecewise linear branch predictors exploit better the correlation between 
branch outcomes and paths, yielding an IPC improvement of 4% over the 
path-based neural predictor [Jim05]. 

A conventional path-based neural predictor achieves high prediction 
accuracy, but its very deeply pipelined implementation makes it both a 
complex and power-intensive component, since for a history length of p it 
uses – to store the weights – p separately indexed SRAM arrays organized 
in a p-stage predictor pipeline. Each pipeline stage requires a separate row-
decoder for the corresponding SRAM array, inter-stage latches, control 
logic and checkpointing support, all of this adding power and complexity to 
the predictor. Loh and Jiménez proposed in [Loh05c] two techniques to 
address this problem. The first decouples the branch outcome history length 
from the path history length using shorter path history and a traditional long 
branch outcome history. In the original path-based neural predictor, the path 
history was always equal to the branch history length. The shorter path 
history allows the reduction of the pipeline length, resulting in decreased 
power consumption and implementation complexity. The second technique 
uses the bias-weights to filter out highly-biased branches (mostly always 
taken or mostly always not taken branches), and avoids consuming update 
power for these easy-to-predict branches. For these branches the prediction 
is determined only by the bias weight, and if it turns out to be correct, the 
predictor skips the update phase which saves the associated power. The 
proposed techniques improve the prediction accuracy with 1%, and more 
important, reduce power and complexity by decreasing the number of 
SRAM arrays, and reducing predictor update activity by 4-5%. Decreasing 
the pipeline depth to only 4-6 stages it is reduced the implementation 
complexity of the path-based neural predictor. 

Tarjan and Skadron introduced in [Tar05] the hashed perceptron 
predictor, which merges the concepts behind the gshare [McFar93] and 
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path-based perceptron predictors [Jim03]. The previous perceptron 
predictors assign one weight per local, global or path branch history bit. 
This means that the amount of storage and the number of adders increases 
linearly with the number of history bits used to make a prediction. One of 
the key insights of Tarjan’s work is that one-to-one ratio between weights 
and number of history bits is not necessary. By assigning a weight not to a 
single branch but a sequence of branches (hashed indexing), a perceptron 
can work on multiple partial patterns making up the overall history. The 
hashed indexing consists in XORing a segment of the global branch history 
with a branch address from the path history. Decoupling the number of 
weights from the number of history bits used to generate a prediction allows 
the reduction of adders and tables almost arbitrarily. Using hashed indexing, 
linearly inseparable branches which are mapped to the same weight can be 
accurately predicted, because each table acts like a small gshare predictor 
[McFar93]. The hashed perceptron predictor improves accuracy by up to 
27.2% over a path-based neural predictor.  

Loh and Jiménez introduced in [Loh05b] a new branch predictor that 
takes the advantage of deep-history branch correlations. To maintain 
simplicity, they limited the predictor to use conventional tables of saturating 
counters. Thus, the proposed predictor achieves neural-class prediction rates 
and IPC performance using only simple PHT (pattern history table) 
structures. The disadvantage of PHTs is that their resource requirements 
increase exponentially with branch history length (a history length of p 
requires 2p entries in a conventional PHT), in contrast to neural predictors, 
whose size requirements increase only linearly with the history length. To 
deal with very long history lengths, they proposed a Divide-and-Conquer 
approach where the long global branch history register is partitioned into 
smaller segments, each of them providing a short branch history input to a 
small PHT. A final table-based predictor combines all of these per-segment 
predictions to generate the overall decision. Their predictor achieves higher 
performance (IPC) than the original global history perceptron predictor, 
outperforms the path-based neural predictors, and even achieves an IPC rate 
equal to the piecewise-linear neural branch predictor. Using only simple 
tables of saturating counters, it is avoided the need for large number of 
adders, and in this way, the predictor is feasible to be implemented in 
hardware. 

Desmet et al. [Des04] proposed a different approach for branch 
classification. They evaluated the predictive power of different branch 
prediction features using Gini-index metric, which is used as selection 
measure in the construction of decision trees. Actually, Gini-index is a 
metric of informational energy and in this case is used to identify the 
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branches with high entropy. In contrast to our work Desmet used as input 
features both dynamic information (global and local branch history) and 
static information (branch type, target direction, ending type of taken-
successor-basic-block). 

In [Hei99a] the authors identified some program constructs and data 
structures that create “hard to predict” branches. In order to accurately 
predict difficult branches the authors find additional correlation information 
beyond local and global branch history. In their approach the prediction 
table is addressed by a combination between structural information, value 
information and history of values that are tested in the condition of 
respective branch. Unlike our work, Heil et al. didn’t use the path history 
information in order to do better predictions. Using the proposed prediction 
method based on data values significantly improves prediction accuracy for 
some certain difficult branches but the overall improvements are quite 
modest. However there are some unsolved problems: they tested only 
particular cases of difficult branches, and also, they didn’t approach branch 
conditions with two input values. Their final conclusion suggests that 
researchers must focus on the strong correlation between instructions 
producing a value and, respectively, the branch condition that would be 
triggered by that certain value. 

In [Cha02] the authors are focusing on some difficult predictable 
branches in a Simultaneous Subordinate Micro-Threading (SSMT) 
architecture. They defined a difficult path being a path that has a terminating 
branch which is poorly predicted when it executes from that path. A path 
represents a particular sequence of control-flow changes. It is shown that 
between 70% and 93.5% of branch mispredictions are covered by these 
difficult paths, involving thus a significant challenge in branch prediction 
paradigm. The proposed solution in dealing with these difficult predictable 
branches consists in dynamically construct micro-threads that can 
speculatively and accurately pre-compute branch outcomes, only along 
frequently mispredicted paths. Obviously, micro-thread predictions must 
arrive in time to be useful. Ideally, every micro-thread would complete 
before the fetch of the corresponding difficult branch. By observing the 
data-flow within the set of instructions guaranteed to execute each time the 
path is encountered, it can be extracted a subset of instructions that will pre-
compute the branch. The proposed micro-architecture contains structures to 
dynamically identify difficult paths (Path Cache), construct micro-threads 
(Micro-Thread Builder) and communicate predictions to the main thread. 
The proposed technique involves realistic average speed-ups of up to 10% 
but the average potential speed-up through perfect prediction of these 
difficult branches is about 100%, suggesting the idea’s fertility. 
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Unfortunately the authors didn’t investigate why these paths, respectively 
their associated final branches, are difficult predictable. In other words, a 
very important question is: why these “difficult paths” frequently lead to 
miss-predictions? We could suspect that we already gave the answer in our 
paper because these “difficult branches” might be, at least partially, exactly 
the unbiased branches in the sense defined by us, and, therefore, difficult 
predictable. They could be more predictable even in a single threaded 
environment, by sufficiently growing history pattern length or extending 
prediction information, as we’ll show further in this work. Thus, our 
hypothesis is that SSMT environment represents a sufficient solution in 
order to solve these difficult branches, as the authors shown, but not a 
necessary one.  

In [Che03] the authors proposed a new approach, called ARVI 
(Available Register Value Information), in order to predict branches based 
on partial register values along the data dependence chain leading up to the 
branch. The authors show that for some branches the correlation between 
such register value information and the branch’s outcome can be stronger 
than either history or path information. Thus, the main idea behind the 
ARVI predictor is the following: if the essential values in the data 
dependence chain, that determine the branch’s condition, should be 
identified, and those values have occurred in the past, then the branch’s 
outcome should be known. If the values involved in the branch condition are 
the same as in a prior occurrence then the outcome of the branch will be the 
same, too. Thus, if the branch’s register values are available then a look up 
table can provide the last branch’s outcome occurred with the same values. 
Unfortunately, the branch’s register values are rarely available at the time of 
prediction. However, if values are available for registers along the 
dependence chain that leads up to the branch, then the predictor can use 
these values to index into a table and reuse the last behavior of the branch 
occurred in the same context. Therefore, instead of relying only on branch 
history or path, the ARVI predictor includes the data dependent registers as 
part of the prediction information. The ARVI predictor uses a Data 
Dependence Table (DDT) to extract the registers corresponding to 
instructions along the data dependence chain leading up to the branch. The 
branch’s PC and the identifiers of the data dependent registers are hashed 
together and used to index the prediction table. The values of the data 
dependent registers are hashed together and used as a tag to distinguish the 
occurrences of the same path having different values in the registers. Thus, 
the ARVI predictor uses both path and value-based information to classify 
branch instances. A two-level predictor using ARVI at the second level 
achieves a 12.6% overall IPC improvement over the state-of-the-art two 
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level predictors, for the SPEC’95 integer benchmarks. The authors selected 
SPEC’95 integer benchmarks because their branch behavior was extensively 
studied permitting comparisons between different works. In our opinion, if 
dynamic branches that are unbiased in their branch history or path contexts 
[Vin06] are biased in their value history context, the benefit could be 
remarkable. An analysis in this sense should be effectuated. 

Z. Smith in his work [Smi98] determined through simulation on the 
SPEC’95 benchmarks that the majority of branch mispredictions come from 
a relatively small number of static branches. Therefore, he identified “bad” 
branches based on the distribution of mispredictions – a function of the 
number of mispredictions per branch using the gshare predictor with 12 
history bits. An analysis of  branches having  a relatively high number of 
mispredictions  shows that they could be really  less predictable  but without 
importance due to their relatively low number of dynamic instances, and, on 
the other hand, some of them could be predictable  because the number of 
mispredictions is, however, far less then the number of branch’s dynamic 
instances. Consequently, there is no strong correlation between branch’s 
predictability or global prediction accuracy and the distribution of 
mispredictions. In order to increase the predictability of mostly mispredicted 
branches, Smith evaluated the possibility to predict branch outcomes based 
on a value history. The idea is to use a context-based predictor whose 
prediction table is indexed by a register value instead of the XOR between 
the PC and global history as in gshare. In their implementation, only the 
first (non-immediate) branch operand is used as prediction context, because, 
as he shows, the majority of branches have the second operand equal with 
zero. However, using both branch operands as prediction information could 
be better. Using a history of only 2 values together with the value of the 
outer loop counter (an iteration counter associated to the enclosing loop’s 
branch), Smith obtained a branch prediction accuracy of 93.4%. 

In [Hei99b] the authors observed that many important branches that 
are hard to predict based on branch history and path become easily 
predictable if data-value information is used. First, they analyzed a 
technique called speculative branch execution that uses a conventional data-
value predictor to predict the input values of the branch instruction and, 
after that, executes the branch instruction using the predicted values. The 
main disadvantage of this method consists in the relatively high prediction 
latency, because the operand-value prediction is followed by the pre-
calculation of the branch’s condition. Therefore, they proposed a Branch 
Difference Predictor (BDP) that maintains a history of differences between 
branch source register operands and uses it in the prediction process. 
Consequently, the value history information is used directly for branch 
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prediction, reducing thus the latency. Since branch outcomes are determined 
by subtracting the two inputs, the branch source differences correlate very 
well with the branch outcomes. The branch difference history is maintained 
per static branch in a Value History Table (VHT) and it is retrieved using 
the branch’s PC. By using branch differences, the number of patterns is very 
high, since a certain static branch instruction may produce many values. 
Thus, predicting all branches through this method leads either to excessive 
storage space requirements or to significant table interference. Therefore, in 
their prediction mechanism, only the difficult branches are predicted based 
on the branch source differences using the Rare Event Predictor (REP), 
while most branches are predicted using a conventional predictor (e.g. 
gshare). They considered that a branch is difficult if it is mispredicted by 
the conventional predictor. Therefore, REP’s updating introduces only 
branches mispredicted by the conventional predictor but correctly predicted 
by REP. When a branch instruction occurs, the VHT and the REP are 
accessed in parallel with the PC and global branch history. If the value 
difference history matches a REP tag, then the REP provides the prediction. 
If the REP does not contain that certain pattern, the conventional branch 
predictor generates the prediction. Their results show that the majority of 
prediction accuracy improvement is gained by using a single branch 
difference, while adding a second or third difference results in little 
additional improvement. The BDP reduces the misprediction rate by up to 
33% compared to gshare and up to 15% compared to Bi-Mode predictors, in 
the SPEC’95 integer benchmarks. A first important difference between 
Heil’s approach and ours is that we are focalizing on unbiased branches 
identified in our previous work [Vin06] instead of Heil’s difficult branches. 
However, the main difference is that we correlate branch’s outcome with the 
sign of the condition’s difference while Heil et al. correlate it with the value 
of the condition’s difference. As we’ll further show, using signs instead 
values involves better prediction accuracies and less storage necessities. 
Furthermore, we use a sign-history of up to 256 condition differences in 
contrast to the value-history of up to 3 condition differences exploited in 
[Hei99b]. Another important difference between the two approaches is the 
architectural one, since we predict branches using some state-of-the-art 
Markov and neural predictors. 

Thomas et al. [Tho03] introduced new branch prediction information 
that consists in affector branches. They identify for each dynamic branch 
from a long global history, a set of branches called affectors, which control 
the computation that directly affect the source operands of the current 
dynamic branch. Since affectors have a direct effect on the outcome of a 
future branch, they have a high correlation with that branch. The affector 
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information is represented as a bitmap having all bits corresponding to the 
affector branches set to 1 and, respectively, those of non-affectors set to 0. 
The affector information is maintained based on runtime dataflow 
information for each architectural register as entries in an Affector Register 
File (ARF). When the processor encounters a conditional branch, all entries 
in the ARF are shifted left by one bit and the least significant bit is made 0. 
When a register-writing instruction occurs, the ARF entries corresponding 
to the source registers are ORed together and written into the ARF entry of 
the destination register with the least significant bit set to 1. Thus, the 
affector information for the destination register is generated as a union of 
the affector histories corresponding to the source registers, while the least 
significant bit, set to 1, marks the last branch from the global history as an 
affector. The affector branch information for a branch instruction is 
inherited from the affector information corresponding to its source registers. 
Therefore, when a prediction is to be made for a certain branch, the affector 
information of its source registers are ORed together in order to determine 
its affector branches. The authors also proposed different prediction 
schemes that use the affector branch information.  

In another work Thomas et al. [Tho01] improved instruction centric 
value prediction by using a dynamic dataflow inherited speculative context 
(DDISC) for hard-to-predict instructions. The DDISC consists in a 
compression of the PCs and the predicted values of the predictable source 
producer instructions. The context is determined by assigning a signature to 
each node in the dataflow graph. The signature of a predictable instruction is 
its value predicted by a conventional predictor. The signature of 
unpredictable non-load instructions is inherited from the signatures of its 
operand producers. In the case of multiple operands, the signature of 
unpredictable non-load instructions is the XOR of the signatures of their 
operand producers. The signature of unpredictable load instructions is 
inherited from the signature of the preceding store instruction that wrote the 
value into the same memory location. The DDISC for a certain instruction is 
obtained by rotating its calculated signature by a value determined by the 
PC (e.g. the last five bits of the PC). Their simulation results show that 
introducing dataflow-based contexts the prediction accuracy improvement 
ranges from 35% to 99%. 

Constantinides et al. [Con04] presented a method of detecting 
instruction-isomorphism and its application to dynamic branch prediction. A 
dynamic instruction is considered isomorphic if its component graph is 
identical with the component graph of an earlier executed dynamic 
instruction. The component graph of a dynamic instruction can include 
information about the instruction, its dynamic data dependence graph and its 
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input data. Two cases of instruction isomorphism can be distinguished: 
isomorphic-equality and pseudo-isomorphism. In the case of isomorphic 
equality the instructions are isomorphic and they have the same outputs, 
while in the pseudo-isomorphism case, the instructions are isomorphic but 
their outputs are not equal. The isomorphism detection process is preceded 
by component-graph transformations that may convert non-isomorphism to 
isomorphic-equality by removing information from the component graph 
that does not affect the outcome of the instruction. The isomorphism 
detection mechanism contains four units: the Register-Signature File (RSF), 
the Component Graph Encoding/Transformation mechanism (CGET), the 
Memory Signature File (MSF) and the Isomorphism Detection Table (IDT). 
The RSF is accessed with the source register names to read the signatures – 
encoded component graphs. The CGET takes the instruction’s source 
signatures and creates a new signature, which represents the instruction’s 
encoded/transformed component-graph. If the instruction writes to a register 
the new signature is written into the RSF entry corresponding to the 
destination register. To determine if an instruction is isomorphic with a 
previously executed instruction, its signature – produced by CGET – is used 
to access the IDT. The IDT also returns the branch direction in the case of 
branch prediction. Isomorphism detection must wait for decoded instruction 
information and, thus, the isomorphic branch predictor has relatively high 
latency. Therefore, Constantinides et al. proposed a hybrid branch prediction 
mechanism composed by a fast conventional predictor and a slower 
isomorphic-based predictor. Consequently, the isomorphic prediction – 
available few cycles after the conventional prediction – is used to validate 
and possibly override the prediction provided by the fast base predictor. 

In [Gon99] and [Gon01] González et al. introduced a branch 
prediction through value prediction unit (BPVP) that pre-computes the 
outcomes of branches by predicting their input values. Since, the accuracy 
of value predictors is lower than that of the conventional branch predictors, 
speculative branch pre-computation must be applied selectively. Therefore, 
they proposed a hybrid branch prediction mechanism involving a correlating 
branch predictor (e.g. gshare) and a BPVP that uses a conventional value 
predictor. The value predictor is used together with an Input Information 
Table (IIT) and, respectively, an additional logic to detect the instructions 
that generate the branch’s inputs. Each architectural register has an entry in 
the IIT that stores the PC of the latest instruction having the corresponding 
register as destination and, respectively, the value computed speculatively 
by the latest compare instruction having the corresponding register as 
destination. The compare instructions are speculatively pre-executed 
according to their predicted inputs and the speculative results are stored in 
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the IIT. The mechanism has different behaviors depending on the branch 
that is predicted. In the case of branches with inputs produced by arithmetic 
or load instructions, the IIT is accessed with the source register names to 
read the PCs of the latest instructions that had as destination the branch’s 
source registers (detection of the instructions that produces the branch 
inputs). The PCs are used to access the value predictor that predicts the 
inputs of the branch. The branch’s outcome is speculatively pre-computed 
based on the predicted inputs. In the case of branches with inputs produced 
by compare instructions, the IIT is accessed with the source register names 
to read the comparison’s speculative result. The outcome of the branch is 
speculatively pre-computed based on this speculative comparison result. 
The BPVP-gshare predictor achieves a speedup of 8% over the 2bit-gshare 
predictor. The instruction centric value prediction within the BPVP should 
be replaced with register centric value prediction [Vin05], reducing the 
complexity, hardware costs and power consumption. Thus, branches should 
be pre-computed speculatively based on their input values predicted with an 
optimized register centric value predictor (2-level adaptive value predictor 
instead of PPM). 

In [Rot99] call targets are correlated with the instructions that 
produce them rather than with the call’s global history or the previous 
branches’ targets. The proposed approach pre-computes virtual function 
call’s (v-call) targets. V-calls’ targets are hard predictable even through 
path-history based schemes that exploit the correlation between multiple v-
calls to the same object reference. Object oriented programming increases 
the importance of v-calls. The proposed technique dynamically identifies the 
sequence of instructions that computes a v-call target. Based on this 
instruction sequence it is possible to pre-calculate the target before the 
actual v-call is encountered. This pre-calculation can be used to supply a 
prediction. The approach reduces v-call target miss-predictions with 24% 
over a path-based two level predictor. 

In [Vin03] the authors proposed to pre-compute branches instead of 
predicting them. Pre-computing branches means to determine the outcome 
of a branch as soon as all branch operands are known. The instruction that 
produced the last operand also triggers the branch condition estimation and, 
after this operation, it correspondingly computes the branch outcome. 
Similarly to branch history prediction, branch information is cached into a 
“prediction table” (PT). Each PT entry has the following fields: TAG (the 
lower part of the PC), PC1 and PC2 (the PCs of the instructions that 
produced the branch operand values), OPC (the opcode of the branch), 
nOP1 and nOP2 (the register names of the branch operands), PRED (for the 
branch outcome) and a LRU field (Least Recently Used). The register file 
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has two additional fields for each register: LP (the PC of the last producer) 
and RC (a reference counter which is incremented by each instruction that 
modifies a register linked by a branch instruction stored in the PT and, 
respectively, decremented when the corresponding branch instruction is 
evicted from the PT). The PC of any non-branch instruction that modifies at 
least one register is recorded into the supplementary LP (Last Producer) 
field of its destination register. The first issue of a particular branch in the 
program is predicted with a default value (not taken). After the branch’s 
execution, a PT entry is allocated and updated. Every time after a non-
branch instruction – having the corresponding RC field greater than 0 – is 
executed, the PC1 and PC2 fields from the PT are searched upon its PC. 
When a hit occurs, the branch stored in that PT entry is executed and the 
outcome is stored into the PRED bit. When the branch is issued, its outcome 
is found in the PT, as it was previously computed, and thus its behavior is 
perfectly known before execution. From the pure prediction accuracy point 
of view this method seems to be almost perfect. Unfortunately, the 
improvement in prediction accuracy brought by this scheme must be paid in 
terms of timing – because branches frequently follow too closely after the 
source producer instructions – and hardware costs. Based on the pre-
computing branch concept [Vin03] Aamer et al. presented in [Aam03] a 
study regarding the number of instructions occurred between the execution 
of the instruction that produced the last operand of a branch and the 
execution of that branch. Their simulations show that the average distance 
between the last source producer and branch is less than the ideal theoretical 
distance. If the operand producer instruction is too close to the 
corresponding branch then the branch would have to postpone processing 
for a few cycles, until the operand producer instruction is finished. For these 
branches a BTB can be used, improving thus the performance. Thus, the 
branch outcomes can be obtained far enough in advance so that some 
performance improvement can be still achieved. 

Aragón et al. presented in [Ara01] a new approach to improve 
branch predictors: selective branch prediction reversal. The main idea is 
that many branch mispredictions can be avoided if they are selectively 
reversed. Therefore, they proposed a Branch Prediction Reversal Unit 
(BPRU) that reverses predictions of branches likely to be mispredicted, 
based on the path leading to the branch (including the PC of the input 
producers) and, respectively, the predicted values of the branch inputs. The 
BPRU uses the previously presented BPVP-gshare hybrid branch predictor 
[Gon99] and a Reversal Table (RT). Each entry of the RT stores a reversal 
counter implemented as an up/down saturating counter, and a tag. When a 
branch is predicted, the RT is accessed by hashing together the PCs of its 
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input producers, the predicted input values and the path leading to the 
branch. The most significant bit of the counter indicates if the predicted 
branch outcome must be reversed. When the correct branch outcome is 
available, the corresponding RT entry is updated by incrementing the 
reversal counter if the preliminary branch outcome was correct and, 
respectively, decrementing the counter otherwise. The experimental results 
show average speedups of 6% over the original BPVP-gshare and, 
respectively, of 14% over the 2bit-gshare predictor. 
 In [Gao06] the authors initially implemented a PPM-based branch 
predictor using as context the global branch history. They associated a 
signed saturating prediction counter ranging between [-4, 4] to each PC-
history pair. The counter was incremented if the branch outcome was taken 
and decremented otherwise. When both the branch address and history 
pattern were matched, the corresponding counter provided the prediction. In 
the case of multiple matches for a branch with different history lengths, the 
prediction counter afferent to the longest history was used. However, as they 
show, the longest history match may not be the best choice, and, therefore, 
they proposed another scheme called PPM with the confident longest match 
that uses the prediction counter as a confidence measure. This scheme 
generates a prediction only when the counter is a non-zero value. The 
authors observed that in the case of multiple matches with different history 
lengths, the counters may not agree with each other and different branches 
may favor different history lengths. Thus, the most important scheme 
introduced by Gao and Zhou in this paper, predicts branch outcomes by 
combining multiple partial matches through an adder tree. The Prediction by 
combining Multiple Partial Matches (PMPM) algorithm selects up to L 
confident longest matches and sums the corresponding counters to make a 
prediction. For the fully biased (always taken or always not taken) branches 
they use a bimodal predictor, the PMPM predictor being accessed only for 
not fully biased branches. The realistic PMPM predictor has seven global 
prediction tables indexed by the branch address, global history and path, 
and, respectively, a local prediction table indexed by the branch address and 
local history. When the PMPM is accessed for prediction, up to 4 counters 
from the global history tables are summed with the counter from the local 
prediction table, if there is a hit. If the sum is zero, the bimodal predictor is 
used. Otherwise the sign of the sum provides the prediction. The prediction 
counter from the bimodal prediction table is always updated. The prediction 
counter from the local prediction table is always updated in the case of hit, 
while the counters of the global prediction tables that have been included in 
the summation are updated only when the overall prediction is wrong or the 
absolute value of the sum is less than a certain threshold. Their results show 
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that combining multiple partial matches provides higher prediction accuracy 
than a single partial match, decreasing the average misprediction rate to 
3.41%. A first important difference between the approach presented in 
[Gao06] and our branch difference prediction by combining multiple partial 
matches developed in paragraph 4.5.3 is that we are focalizing on the 
unbiased branches identified in our previous work [Gel06, Vin06] instead of 
“not fully biased” branches. The authors defined a “fully biased” branch 
being a branch in a certain dynamic context having set its attached bias 
counter to a maximum value (the counter is incremented each time that 
branch has a biased behavior and decremented otherwise). Probably it 
would be better to say “highly biased” branch instead of “fully biased”, 
meaning that it was highly biased (maximum counter) during the “last” 
processing period (maximum counter at the current prediction moment). 
However, the main difference is that they used global branch history, while 
we used local branch difference history. Another important difference 
consists in how the multiple Markov predictions are combined: we used 
majority vote (more efficient for our approach) instead of the adder tree 
used by Gao and Zhou. 
 In [Sri06] the authors proposed a hybrid branch prediction scheme 
that employs two PPM predictors, one predicts based on local branch 
history and the other predicts based on global branch history. For both the 
local and global PPM predictors, if the local and, respectively, global 
history were not matched, then shorter patterns are searched, and so on, until 
a match is found. When a pattern match occurs, the outcome of the branch 
that succeeded the pattern during its last occurrence is returned as 
prediction. The two independent predictions are combined through a 
perceptron. The output of the perceptron is computed as Y=W0 + W1PL + 
W2PG, where the inputs PL and PG corresponds to the predictions generated 
by the local and, respectively, global PPM predictor (-1 if not taken and +1 
if taken). The final prediction is taken if the output Y is positive and not 
taken if Y is negative. The table of weights is indexed by the lower 20 bits of 
the branch’s PC. The perceptron is updated by incrementing the weights 
whose inputs match the branch outcome and decrementing those with 
mismatch. The Neuro-PPM branch predictor achieves an average 
misprediction rate of 3%. 



3. Finding Difficult-to-Predict Branches 

Our first goal is to find the difficult predictable branches in the 
SPEC2000 benchmarks [SPEC]. As we already pointed out, we consider 
that a branch in a certain context is difficult predictable if it is unbiased – 
meaning that the branch behavior (Taken/Not Taken) is not sufficiently 
polarized for that certain context (local branch history, global history, etc.) – 
and the taken and not taken outcomes are shuffled. The second goal is to 
improve prediction accuracy for branches with low polarization rate, 
introducing new feature sets that will increase their polarization rate and, 
therefore, their predictability.  

 

3.1. Methodology of Identifying Unbiased Branches 
 

A feature is the binary context on p bits of prediction information 
such as local history, global history or path. Each static branch finally has 
associated k dynamic contexts in which it can appear ( pk 2≤ ). A context 
instance is a dynamic branch executed in the respective context. We 
introduce the polarization index (P) of a certain branch context as follows: 
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• { }kSSSS ...,,, 21=  = set of distinct contexts that appear during all 
branch instances; 
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instances corresponding to context Si, ki ...,,2,1)( =∀ , and 
obviously 110 =+ ff ; 

• if kiSP i ...,,2,1)(,1)( =∀= , then the context iS  is completely 
biased (100%), and thus, the afferent branch is highly predictable; 

• if kiSP i ...,,2,1)(,5.0)( =∀= , then the context iS  is totally 
unbiased, and thus, the afferent branch is not predictable if the taken 
and not taken outcomes are shuffled.  

 
If the taken and respectively not taken outcomes are grouped 

separately, even in the case of  a low polarization index, the branch is 
predictable. The unbiased branches are not predictable only if the taken and 
not taken outcomes are shuffled, because in this case, the predictors cannot 
learn their behavior. For this study we introduce the distribution index for a 
certain branch context, defined as follows: 

 

⎪⎩

⎪
⎨

⎧

>
⋅

=
=

0,
),min(2

0,0
)(

t
t

t

i n
TNT

n
n

SD   (3.2) 

 
where: 

 

• nt = the number of branch outcome transitions, from taken to not 
taken and vice-versa, in context Si; 

• ),min(2 TNT⋅  = maximum number of possible transitions; 
• k = number of distinct contexts, pk 2≤ , where p is the length of the 

binary context; 
• if kiSD i ...,,2,1)(,1)( =∀= , then the behavior of the branch in 

context Si is “contradictory” (the most unfavorable case), and thus its 
learning is impossible; 

• if kiSD i ...,,2,1)(,0)( =∀= , then the behavior of the branch in 
context Si is constant (the most favorable case), and it can be 
learned. 

 
As it can be observed in Figure 3.1, we want to systematically 

analyze different feature sets used by different present-day branch predictors 
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in order to find and, hopefully, to reduce the list of unbiased branch contexts 
(contexts with low polarization P).  
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Figure 3.1. Reducing the number of unbiased branches through feature set 
extension. 

We approached an iterative methodology: a certain Feature Set is 
evaluated only on the unbiased branches determined with the previous 
Feature Sets, because the rest were solved with the previously considered 
Feature Sets. Gradually this list is shortened by increasing the lengths of 
Feature Sets and reapplying the algorithm. Thus, the final list of unbiased 
branches contains only the branches that were unbiased for all their 
contexts. The contexts’ lengths were varied from 16 bits to 28 bits. For the 
final list of unbiased branches we will try to find new relevant feature sets in 
order to further improve their polarization index and, therefore, the 
prediction accuracy. 

This approach is more efficient than one which repeats each time the 
algorithm on all branches. Beside producing some unpleasant aspects 
related to simulation time (days / benchmark) and memory (gigabytes of 
memory needed), the second method would prove even not very accurate. 
This is because some of the branches that are not solved by a long context 
can be solved by a shorter one. Through our iterative approach we avoided 
the occurrence of false problems extending the context.  
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Figure 3.2. The goal of context extension. 

Figure 3.2 presents a suggestive example on how unbiased branch 
contexts can be solved through their extension. We considered that a branch 
context is unbiased if its polarization index (see relation (3.1)) is less than 
0.95. The branch contexts with polarization greater than 0.95 are predictable 
and will obtain relatively high prediction accuracies (around 95%). More 
details are presented in paragraph 3.2.4 on a real example from the Stanford 
Perm benchmark [Flo07]. 

In our experiments we concentrated only on benchmarks with a 
percentage of unbiased branch context instances (obtained with relation 
(3.3)), greater than a certain threshold (T=1%) considering that the potential 
prediction accuracy improvement is not significant in the case of 
benchmarks with percentage of unbiased context instances less than 1%. If 
the percentage of unbiased branch contexts is 1%, if they would be solved, 
the prediction accuracy would increase with maximum 1%. This maximum 
can be reached when all discovered difficult predictable branches in this 
stage are solved by the predictor. 
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where NUBi is the total number of unbiased branch context instances on 
benchmark i, and NBi is the number of dynamic branches on benchmark i 
(therefore, the total number of branch context instances). 
 

3.2. Experimental Results 
 

All simulation results are reported on 1 billion dynamic instructions, 
skipping the first 300 million instructions. We note with LH(p)-GH(q)-
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GHPC(r) branches unbiased on local history (LH) of p bits, global history 
(GH) of q bits, and global history XOR-ed by branch address (GHPC) on r 
bits. In the same manner, for all feature set extensions simulated in this 
work, LH(p)-GH(q)-GHPC(r)→F(s) denotes that we measure the 
polarization rate using feature F on s bits (if the feature is the local history, 
global history or global history XOR-ed by branch address) and/or on s PCs 
(in the case of path), evaluating only the branches unbiased for local history 
of p bits, global history of q bits, and global history XOR-ed by branch 
address on r bits.  

3.2.1. Pattern-based Correlation 
 

We started our study evaluating the branch contexts from SPEC2000 
benchmarks [SPEC] on local branch history of 16 bits: LH(0)-GH(0)-
GHPC(0)→LH(16). In Table 3.1, for each benchmark we presented the 
percentages of branch contexts with polarization indexes belonging to five 
different intervals. The column Dynamic Branches contains the number of 
all dynamic conditional branches for each benchmark. The column Static 
Br. contains the number of static branches for each benchmark. For each 
benchmark we generated using relation (3.1) a list of unbiased branch 
contexts, having polarization less than 0.95. We considered that the branch 
contexts with polarization greater than 0.95 are predictable and will obtain 
relatively high prediction accuracies (around 0.95), therefore, in these cases 
we considered that the potential improvement of the prediction accuracy is 
quite low.  
 

Polarization Rate (P) [%] SPEC 
2000  

Dynamic 
Branches 

Static 
Br. [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9, 1.0]

Unbiased Context  
Instances (P<0.95) 

mcf 118321124 370 10.06 10.50 8.17 8.52 62.74 6812313 5.76%
parser 85382841 1777 6.67 5.90 3.68 4.56 79.19 17589658 20.60%
bzip 42591123 211 15.86 16.50 8.58 6.94 52.12 11252986 26.42%
gzip 71504537 136 15.08 15.63 11.03 9.50 48.76 27692102 38.73%
twolf 70616018 239 14.49 12.72 6.92 5.34 60.54 31763071 44.98%
gcc 90868660 17248 3.06 2.68 1.72 2.30 90.24 9809360 10.80%
Mean 79880717 3330 10.87 10.65 6.68 6.19 65.59 17486582 24.55%

Table 3.1. Polarization rates of branch contexts on local history of 16 bits. 

The column Unbiased Context Instances contains – for each benchmark – 
the number of unbiased context instances and respectively the percentage of 
unbiased context instances reported to all context instances (dynamic 
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branches). As it can be observed in Table 3.1, the relatively high 
percentages of unbiased branches (at average 24.55%) show high 
improvement potential from the predictability point of view. 

We continue our work analyzing a global branch history of 16 bits 
only on the local branch contexts that we already found unbiased for local 
branch history (see Table 3.1 – last column). In other words, we used a 
dynamic branch in our evaluations only if its 16 bit local context is one of 
the unbiased local contexts: LH(16)-GH(0)-GHPC(0)→GH(16). In Table 
3.2, for each benchmark we presented the percentages of branch contexts 
with polarization indexes belonging to five different intervals. The column 
Simulated Dynamic Branches contains the number of evaluated dynamic 
branches (LH(16)-GH(0)-GHPC(0)) and respectively their percentages  
reported to all dynamic branches. The column Simulated St. Br. represents 
the number of static branches evaluated within each benchmark. For each 
benchmark we generated using relation (3.1) a list of unbiased branch 
contexts on local and global history of 16 bits (LH(16)-GH(16)-GHPC(0)), 
having polarization less than 0.95. The last column contains the number of 
unbiased branch context instances and respectively their percentages 
reported to all dynamic branches. Analyzing comparatively Tables 3.1 and 
3.2, we observe that the global branch history reduced the average 
percentage of unbiased branch context instances from 24.55% to 17.48%. 
 

Polarization Rate (P) [%]SPEC 
2000  

Simulated 
Dynamic 
Branches 

Simu-
lated 

St. Br.
[0.5,  
0.6) 

[0.6,  
0.7) 

[0.7,  
0.8) 

[0.8,  
0.9) 

[0.9,  
1.0] 

Unbiased Context  
Instances (P<0.95) 

mcf 6812313 5.76% 25 14.57 11.94 9.25 8.13 56.10 3887052 3.28%
parser 17589658 20.60% 707 6.87 6.98 5.71 6.18 74.26 11064817 12.95%
bzip 11252986 26.42% 83 19.34 16.62 14.36 13.80 35.88 9969701 23.40%
gzip 27692102 38.73% 62 8.98 10.09 9.01 10.88 61.04 20659305 28.89%
twolf 31763071 44.98% 132 8.46 7.43 6.39 9.89 67.83 22893014 32.41%
gcc 9809360 10.80% 4923 4.02 4.13 3.14 3.56 85.15 3563776 3.92%
Mean 17486582 24.55% 988 10.37 9.53 7.97 8.74 63.37 12006278 17.48%

Table 3.2. Polarization rates of branch contexts on global history of 16 bits 
evaluating only the unbiased local branch contexts of 16 bits. 

The next feature set we analyzed is the XOR between a global 
branch history of 16 bits and the lower part of branch address (PC bits 
18÷3): LH(16)-GH(16)-GHPC(0)→GHPC(16). We used again only the 
branch contexts we found unbiased for the previous feature sets (local and 
global branch history of 16 bits). In other words, we used a dynamic branch 
in our evaluations only if its 16 bit local context is one of the unbiased local 
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contexts (Table 3.1), and its 16 bit global context is one of the unbiased 
global contexts (Table 3.2). In Table 3.3, for each benchmark we presented 
the percentages of branch contexts with polarization indexes belonging to 
five different intervals. For each benchmark we generated again using 
relation (3.1), a list of unbiased branch contexts with polarization less than 
0.95 (LH(16)-GH(16)-GHPC(16)).  
 

Polarization Rate (P) [%]SPEC 
2000 

Simulated 
Dynamic 
Branches 

Simu-
lated 

St. Br.
[0.5,  
0.6) 

[0.6,  
0.7) 

[0.7,  
0.8) 

[0.8,  
0.9) 

[0.9,  
1.0] 

Unbiased Context  
Instances (P<0.95) 

mcf 3887069 3.28% 19 30.78 25.21 19.54 17.17 7.30 3887050 3.28%
parser 11065068 12.95% 504 23.84 24.27 19.87 21.56 10.46 11063791 12.95%
bzip 9969757 23.40% 76 28.45 24.43 21.12 20.30 5.70 9969678 23.40%
gzip 20659343 28.89% 51 20.34 22.85 20.43 24.66 11.72 20659290 28.89%
twolf 22893103 32.41% 112 21.11 18.53 15.93 24.69 19.75 22892985 32.41%
gcc 3565197 3.92% 2642 24.05 24.93 18.93 21.46 10.63 3561998 3.91%
Mean 12006590 17.48% 567 24.76 23.37 19.30 21.64 10.92 12005798 17.47%

Table 3.3. Polarization rates on the XOR between global history and branch 
address on 16 bits evaluating only the unbiased local and global branch contexts of 

16 bits. 

The last column contains for each benchmark the number of unbiased 
branch context instances and respectively their percentages reported to all 
dynamic branches. The high percentages of unbiased branch context 
instances in the case of bzip, gzip and twolf benchmarks represent a 
potential improvement of prediction accuracy. 

For the determined unbiased branch contexts we are analyzing now 
if the taken and respectively not taken outcomes are grouped separately. 
This is necessary, because if the branch outcomes are not shuffled they are 
predictable using corresponding two-level adaptive predictors, but if these 
outputs are shuffled the branches are not predictable. We used relation (3.2) 
in order to determine the distribution indexes for each unpredictable branch 
context per benchmark. We evaluated only the unbiased dynamic branches 
obtained using all their contexts of 16 bits (LH(16)-GH(16)-GHPC(16)). 
Table 3.4 shows for each benchmark the percentages of branch contexts 
with distribution indexes belonging to five different intervals in the case of 
local branch history. In the same way, Tables 3.5 and 3.6 present the 
distribution indexes in the case of global history and respectively the XOR 
between global history and branch address. 
 Tables 3.4, 3.5 and 3.6 show that in the case of unbiased branch 
contexts, the taken and respectively not taken outcomes are not grouped 
separately, more, they are highly shuffled.  
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Distribution Rate (D) [%] SPEC 
2000 

Simulated Dynamic 
Branches 

Simu- 
lated 

St. Br. 
[0, 
0.2) 

[0.2, 
0.4) 

[0.4, 
0.6) 

[0.6, 
0.8) 

[0.8, 
1.0] 

mcf 3887069 3.28% 19 9.21 11.02 46.30 13.32 20.15 
parser 11064250 12.95% 483 20.23 9.50 42.44 9.63 18.19 
bzip 9969752 23.40% 75 6.78 6.45 44.00 16.80 25.98 
gzip 20659339 28.89% 51 5.10 5.38 38.70 20.98 29.85 
twolf 22893094 32.41% 110 14.63 5.81 43.42 16.71 19.43 
gcc 3564489 3.91% 2553 39.07 9.11 33.32 6.00 12.50 

Mean 12006332 17.47% 548 15.83 7.87 41.36 13.90 21.01 

Table 3.4. Distribution rates on local history of 16 bits evaluating only the 
branches that were unbiased on all their 16 bit contexts (on local history, global 

history and respectively XOR of global history and branch address). 

Distribution Rate (D) [%] SPEC 
2000 

Simulated Dynamic 
Branches 

Simu- 
lated  

St. Br. 
[0,  
0.2) 

[0.2,  
0.4) 

[0.4,  
0.6) 

[0.6,  
0.8) 

[0.8,  
1.0] 

mcf 3887069 3.28% 19 0.27 4.30 37.75 34.38 23.31 
parser 11064250 12.95% 483 6.92 14.62 36.63 19.33 22.50 
bzip 9969752 23.40% 75 0.25 2.94 32.24 37.43 27.13 
gzip 20659339 28.89% 51 0.26 2.18 26.45 35.19 35.91 
twolf 22893094 32.41% 110 0.84 5.12 26.84 28.44 38.75 
gcc 3564489 3.91% 2553 8.10 18.03 38.66 16.06 19.15 
Mean 12006332 17.47% 548 2.77 7.86 33.09 28.47 27.79 

Table 3.5. Distribution rates on global history of 16 bits evaluating only the 
branches that have all their 16 bit contexts unbiased (on local history, global 

history and respectively XOR of global history and branch address). 

Distribution Rate (D) [%] SPEC 
2000  

Simulated Dynamic 
Branches 

Simu- 
lated  

St. Br. 
[0,  
0.2) 

[0.2,  
0.4) 

[0.4,  
0.6) 

[0.6,  
0.8) 

[0.8,  
1.0] 

mcf 3887069 3.28% 19 0.27 4.30 37.75 34.38 23.31 
parser 11064250 12.95% 483 6.92 14.62 36.63 19.33 22.50 
bzip 9969752 23.40% 75 0.25 2.94 32.24 37.43 27.13 
gzip 20659339 28.89% 51 0.26 2.18 26.45 35.19 35.91 
twolf 22893094 32.41% 110 0.84 5.12 26.84 28.44 38.75 
gcc 3564489 3.91% 2553 8.10 18.03 38.66 16.06 19.15 
Mean 12006332 17.47% 548 2.77 7.86 33.09 28.47 27.79 

Table 3.6. Distribution rates on the XOR between global history and branch 
address  on 16 bits evaluating only branches having all 16 bit contexts unbiased (on 

local and global history and the XOR of global history and branch address). 
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The percentage of unbiased branch contexts having highly shuffled 
outcomes (with distribution index greater than 0.4) is 76.3% in the case of 
local history of 16 bits (see Table 3.4),  89.37% in the case of global history 
of 16 bits (see Table 3.5), and 89.37% in the case of global history XOR-ed 
by branch address on 16 bits (see Table 3.6). We obtained the same 
distribution indexes for both the global history and respectively the XOR 
between global history and branch address (Tables 3.5 and 3.6). 

A distribution index of 1.0 means the highest possible alternation 
frequency (with taken or not taken periods of 1). A distribution index of 0.5 
means again a high alternation, since, supposing a constant frequency, the 
taken or not taken periods are only 2, lower than the predictors’ learning 
times. In the same manner, periods of 3 introduce a distribution of about 
0.25, and periods of 5 generate a distribution index of 0.15, therefore we 
considered that if the distribution index is lower than 0.2 the taken and not 
taken outcomes are not  shuffled, and the branch’s behavior can be learned. 

We continued our evaluations extending the lengths of feature sets 
from 16 bits to 20, 24 and respectively 28 bits, our hypothesis being that the 
longer feature sets will increase the polarization index and, therefore, the 
prediction accuracy. We started with a local branch history of 20 bits (Table 
3.7), evaluating again only the branch contexts we found unbiased for the 
previous feature sets of 16 bits: LH(16)-GH(16)-GHPC(16)→LH(20).  

 
Polarization Rate (P) [%]SPEC 

2000  
Simulated 
Dynamic 
Branches 

Simu-
lated 

St. Br.
[0.5,  
0.6) 

[0.6,  
0.7) 

[0.7,  
0.8) 

[0.8,  
0.9) 

[0.9,  
1.0] 

Unbiased Context  
Instances (P<0.95) 

mcf 3887050 3.28% 19 8.41 7.96 5.28 5.97 72.37 3147989 2.66%
parser 11063878 12.95% 476 8.50 6.70 3.87 4.44 76.49 7838166 9.18%
bzip 9969651 23.40% 75 8.93 4.69 2.10 2.17 82.11 6493881 15.24%
gzip 20659242 28.89% 51 9.98 7.47 4.55 4.84 73.16 17753722 24.82%
twolf 22892904 32.41% 110 12.79 10.91 5.17 3.93 67.20 17540719 24.83%
gcc 3563213 3.91% 2546 7.79 6.31 3.68 4.56 77.66 2061136 2.26%
Mean 12005990 17.47% 546 9.40 7.34 4.10 4.31 74.83 9139269 13.17%

Table 3.7. Polarization rates on local history of 20 bits evaluating only the 
branches that have all their 16 bit contexts unbiased (on local history, global 

history and respectively XOR of global history and branch address). 

The column Polarization Rate from Table 3.7 presents the percentages of 
branch contexts with polarization indexes belonging to five different 
intervals. The last column of Table 3.7 shows for each benchmark the 
number of unbiased dynamic branches (LH(20)-GH(16)-GHPC(16)), and 
respectively their percentage reported to all dynamic branches. 
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Table 3.8 shows the results obtained using a global branch history of 
20 bits: LH(20)-GH(16)-GHPC(16)→GH(20). The last column of Table 3.8 
shows the number of unbiased dynamic branches (LH(20)-GH(20)-
GHPC(16)) and their percentage reported to all dynamic branches. 
 

Polarization Rate (P) [%]SPEC 
2000 

Simulated 
Dynamic 
Branches 

Simu-
lated 

St. Br.
[0.5,  
0.6) 

[0.6,  
0.7) 

[0.7,  
0.8) 

[0.8,  
0.9) 

[0.9,  
1.0] 

Unbiased Context 
Instances (P<0.95) 

mcf 3148005 2.66% 18 20.06 20.55 13.08 10.60 35.71 3057312 2.58%
parser 7838384 9.18% 446 15.44 14.61 10.83 11.04 48.09 7166404 8.39%
bzip 6493918 15.24% 74 15.86 17.02 12.45 12.43 42.24 6228047 14.62%
gzip 17753750 24.82% 45 15.32 16.89 15.88 17.75 34.16 17215762 24.07%
twolf 17540776 24.83% 103 13.96 12.79 11.63 17.61 44.00 16240443 22.99%
gcc 2062167 2.26% 2299 14.59 13.77 9.35 9.93 52.37 1767385 1.94%
Mean 9139500 13.17% 497 15.87 15.93 12.20 13.22 42.76 8612559 12.43%

Table 3.8. Polarization rates on global history of 20 bits evaluating only the 
unbiased branches on local history of 20 bits, global history of 16 bits, and the 

XOR of global history and branch address on 16 bits. 

In the same manner, Table 3.9 shows the results obtained using a XOR of 
20 bits between global history and branch address: LH(20)-GH(20)-
GHPC(16)→GHPC(20). The last column of Table 3.9 shows for each 
benchmark the number and percentage of unbiased dynamic branches: 
LH(20)-GH(20)-GHPC(20). 

 
Polarization Rate (P) [%]SPEC 

2000  
Simulated 
Dynamic 
Branches 

Simu-
lated 

St. Br.
[0.5,  
0.6) 

[0.6,  
0.7) 

[0.7,  
0.8) 

[0.8,  
0.9) 

[0.9,  
1.0] 

Unbiased Context 
Instances (P<0.95) 

mcf 3057327 2.58% 18 30.53 31.28 19.91 16.14 2.13 3057309 2.58%
parser 7166723 8.39% 429 27.62 26.16 19.37 19.76 7.08 7166215 8.39%
bzip 6228107 14.62% 73 26.21 28.12 20.57 20.53 4.57 6228010 14.62%
gzip 17215799 24.07% 45 20.78 22.96 21.58 24.13 10.55 17215749 24.07%
twolf 16240535 22.99% 101 21.26 19.48 17.70 26.81 14.74 16240434 22.99%
gcc 1769008 1.94% 2019 28.28 26.84 18.17 19.29 7.41 1766800 1.94%
Mean 8612917 12.43% 447 25.78 25.80 19.55 21.11 7.74 8612420 12.43%

Table 3.9. Polarization rates on the XOR of 20 bits between global history and 
branch address evaluating only the branches unbiased for local and global history 
of 20 bits respectively the XOR of global history and branch address on 16 bits. 

As it can be observed a considerable number of unbiased branches become 
biased if the feature sets are extended from 16 bits to 20 bits. Extending the 
feature set length from 16 bits to 20 bits, the percentage of unbiased 
dynamic branches decreased at average from 17.47% (see Table 3.3) to 
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12.43% (Table 3.9). Using the same simulation methodology, we extend the 
feature sets to 24 bits.  

 
Polarization Rate (P) [%]SPEC 

2000 
Simulated 
Dynamic 
Branches 

Simu-
lated 

St. Br.
[0.5,  
0.6) 

[0.6,  
0.7) 

[0.7,  
0.8) 

[0.8,  
0.9) 

[0.9,  
1.0] 

Unbiased Context 
Instances (P<0.95) 

mcf 3057318 2.58% 18 9.04 7.95 4.59 5.41 73.01 2632531 2.22%
parser 7166415 8.39% 424 10.88 8.16 4.19 4.44 72.34 5083585 5.95%
bzip 6228031 14.62% 73 8.41 4.71 2.46 2.84 81.59 4250654 9.98%
gzip 17215734 24.07% 45 9.20 6.19 3.64 4.19 76.78 13753938 19.23%
twolf 16240411 22.99% 101 10.14 5.40 2.21 1.95 80.31 12308193 17.42%
gcc 1768113 1.94% 1980 11.73 9.02 5.11 6.14 68.00 1227407 1.35%
Mean 8612670 12.43% 440 9.90 6.90 3.70 4.16 75.33 6542718 9.36%

Table 3.10. Polarization rates on local history of 24 bits only for branches that 
were unbiased on all their 20 bit contexts (on local history, global history and 

respectively XOR of global history and branch address). 

Table 3.10 shows the results obtained using a local branch history of 24 bits: 
LH(20)-GH(20)-GHPC(20)→LH(24). The last column of Table 3.10 shows 
for each benchmark the number and percentage of unbiased dynamic 
branches: LH(24)-GH(20)-GHPC(20). 

Table 3.11 shows the results obtained using a global branch history 
of 24 bits: LH(24)-GH(20)-GHPC(20)→GH(24). The last column of Table 
3.11 shows the number of unbiased dynamic branches (LH(24)-GH(24)-
GHPC(20)) and their percentage reported to all dynamic branches. 
 

Polarization Rate (P) [%]SPEC 
2000 

Simulated 
Dynamic 
Branches 

Simu-
lated 

St. Br.
[0.5,  
0.6) 

[0.6,  
0.7) 

[0.7,  
0.8) 

[0.8,  
0.9) 

[0.9,  
1.0] 

Unbiased Context 
Instances (P<0.95) 

mcf 2632542 2.22% 18 15.20 13.79 7.13 5.90 57.98 2568911 2.17%
parser 5083795 5.95% 414 18.82 16.61 10.90 10.41 43.25 4664394 5.46%
bzip 4250689 9.98% 73 12.10 11.31 7.12 7.60 61.87 3799893 8.92%
gzip 13753960 19.23% 44 18.43 18.17 15.37 16.36 31.67 13480788 18.85%
twolf 5459637 17.42% 93 16.99 14.90 10.91 13.88 43.32 5144339 7.28%
gcc 1228364 1.35% 1856 17.16 14.61 9.94 10.15 48.14 1097445 1.20%
Mean 5401498 9.36% 416 16.45 14.89 10.22 10.71 47.70 5125962 7.31%

Table 3.11. Polarization rates on global history of 24 bits evaluating only the 
branches unbiased for local history of 24 bits, global history of 20 bits and 

respectively XOR of global history and branch address on 20 bits. 

Table 3.12 presents the results obtained using the XOR between global 
branch history and branch address on 24 bits: LH(24)-GH(24)-
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GHPC(20)→GHPC(24). The last column of Table 3.12 shows for each 
benchmark the number and percentage of unbiased dynamic branches: 
LH(24)-GH(24)-GHPC(24). Extending the feature set length from 20 bits to 
24 bits, the percentage of unbiased dynamic branches decreased at average 
from 12.43% (see Table 3.9) to 7.31% (Table 3.12). 

 
Polarization Rate (P) [%]SPEC 

2000 
Simulated 
Dynamic 
Branches 

Simu-
lated 

St. Br.
[0.5,  
0.6) 

[0.6,  
0.7) 

[0.7,  
0.8) 

[0.8,  
0.9) 

[0.9,  
1.0] 

Unbiased Context 
Instances (P<0.95) 

mcf 2568928 2.17% 18 35.55 32.24 16.67 13.79 1.75 2568910 2.17%
parser 4664693 5.46% 398 31.21 27.52 18.08 17.25 5.93 4664273 5.46%
bzip 3799936 8.92% 72 30.43 28.45 17.91 19.13 4.07 3799859 8.92%
gzip 13480825 18.85% 41 24.64 24.29 20.55 21.87 8.66 13480783 18.85%
twolf 5144419 7.28% 89 27.03 23.73 17.38 22.10 9.76 5144327 7.28%
gcc 1098795 1.20% 1668 30.73 26.27 17.87 18.39 6.75 1097009 1.20%
Mean 5126266 7.31% 381 29.93 27.08 18.07 18.75 6.15 5125860 7.31%

Table 3.12. Polarization rates on the XOR of 24 bits between global history and 
branch address evaluating only the branches unbiased for local history of 24 bits, 
global history of 24 bits and XOR of global history and branch address on 20 bits. 

We extended again the feature sets to 28 bits. Table 3.13 shows the 
results obtained using a local branch history of 28 bits: LH(24)-GH(24)-
GHPC(24)→LH(28). The last column of Table 3.13 shows for each 
benchmark the number of unbiased dynamic branches (LH(28)-GH(24)-
GHPC(24)) and their percentage reported to all dynamic branches.  
 

Polarization Rate (P) [%]SPEC 
2000  

Simulated 
Dynamic 
Branches 

Simu-
lated 

St. Br.
[0.5,  
0.6) 

[0.6,  
0.7) 

[0.7,  
0.8) 

[0.8,  
0.9) 

[0.9,  
1.0] 

Unbiased Context 
Instances (P<0.95) 

mcf 2568923 2.17% 18 10.62 8.64 4.69 5.35 70.69 2174101 1.83%
parser 4664502 5.46% 395 11.17 7.09 3.72 4.07 73.95 3301587 3.86%
bzip 3799904 8.92% 71 10.16 5.90 3.04 3.59 77.30 2728593 6.40%
gzip 13480777 18.85% 41 9.76 6.14 3.50 4.14 76.46 10691142 14.95%
twolf 5144325 7.28% 87 9.03 4.44 2.81 3.76 79.96 4208376 5.95%
gcc 1098269 1.20% 1644 13.68 10.29 5.68 6.76 63.59 774654 0.85%
Mean 5931686 8.54% 122 10.14 6.44 3.55 4.18 75.67 4620759 6.60%

Table 3.13. Polarization rates on local history of 28 bits only for branches that 
were unbiased on all their 24 bit contexts (on local history, global history and 

respectively XOR of global history and branch address). 

As it can be observed, in the case of the gcc benchmark, extending the 
feature set length to 28 bits, the percentage of the unbiased context instances 
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is less than the threshold T of 1% (see relation (3.3)), and thus we eliminate 
it from our next evaluations. We consider that the conditional branches from 
the gcc benchmark are not difficult predictable using feature lengths of 28 
bits. As a consequence the results obtained with the gcc benchmark are not 
included in the average results from Table 3.13. 

Polarization Rate (P) [%]SPEC 
2000  

Simulated 
Dynamic 
Branches 

Simu-
lated 

St. Br.
[0.5,  
0.6) 

[0.6,  
0.7) 

[0.7,  
0.8) 

[0.8,  
0.9) 

[0.9,  
1.0] 

Unbiased Context 
Instances (P<0.95) 

mcf 2174117 1.83% 18 15.41 11.53 6.18 5.29 61.60 2149108 1.81%
parser 3301768 3.86% 370 21.26 17.06 10.39 10.18 41.11 3041426 3.56%
bzip 2728627 6.40% 69 11.81 8.86 5.07 5.55 68.72 2280197 5.35%
gzip 10691161 14.95% 41 19.36 17.05 13.50 14.84 35.25 10405692 14.55%
twolf 4208418 5.95% 85 16.53 14.43 10.21 13.55 45.29 4007088 5.67%
Mean 4620818 6.60% 116 16.87 13.78 9.07 9.88 50.39 4376702 6.19%

Table 3.14. Polarization rates on global history of 28 bits evaluating only the 
branches unbiased for local history of 28 bits, global history of 24 bits and 

respectively the XOR of global history and branch address on 24 bits. 

Table 3.14 presents the results obtained when we used a global branch 
history of 28 bits: LH(28)-GH(24)-GHPC(24)→GH(28). The column 
Unbiased Context Instances from Table 3.14 presents for each benchmark 
the number and percentage of unbiased dynamic branches: LH(28)-GH(28)-
GHPC(24). 

Finally, Table 3.15 shows the results obtained using the XOR of 
global branch history and branch address on 28 bits: LH(28)-GH(28)-
GHPC(24)→GHPC(28). The last column of Table 3.15 shows for each 
benchmark the number of unbiased dynamic branches (LH(28)-GH(28)-
GHPC(28)) and their percentage reported to all dynamic branches. 

 
Polarization Rate (P) [%]SPEC 

2000 
Simulated 
Dynamic 
Branches 

Simu-
lated 

St. Br.
[0.5,  
0.6) 

[0.6,  
0.7) 

[0.7,  
0.8) 

[0.8,  
0.9) 

[0.9,  
1.0] 

Unbiased Context 
Instances (P<0.95) 

mcf 2149125 1.81% 18 39.26 29.37 15.73 13.46 2.17 2149107 1.81%
parser 3041691 3.56% 357 34.21 27.48 16.71 16.39 5.22 3041301 3.56%
bzip 2280240 5.35% 69 36.29 27.22 15.57 17.05 3.87 2280161 5.35%
gzip 10405726 14.55% 41 27.56 24.28 19.22 21.13 7.81 10405684 14.55%
twolf 4007152 5.67% 82 27.73 24.21 17.12 22.73 8.21 4007068 5.67%
Mean 4376787 6.19% 113 33.01 26.51 16.87 18.15 5.45 4376664 6.19%

Table 3.15. Polarization rates on the XOR of 28 bits between global history and 
branch address evaluating only the branches unbiased for local and global history 
of 28 bits respectively the XOR of global history and branch address on 24 bits. 
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Extending the feature set length from 24 bits to 28 bits, the percentage of 
unbiased dynamic branches decreased at average from 7.31% (see Table 
3.12) to 6.19% (see Table 3.15). Despite of the feature set extension, the 
number of unbiased dynamic branches remains still high (6.19%), and thus, 
it is obvious that using  longer feature sets is not sufficient. 
 The global history solves at average 2.56% of the unbiased dynamic 
branches not solved with local history (see Figure 3.3). The hashing 
between global history and branch address (XOR) behaves just like the 
global history, and it does not improve further the polarization rate. In 
Figure 3.3 can be also observed that increasing the branch history, the 
percentage of unbiased dynamic branches decreases, suggesting a 
correlation between branches situated at a large distance in the dynamic 
instruction stream. The results also show that the “ultimative predictibility 
limit” of history context-based prediction is approximatively 94%, 
considering unbiased branches as completely unpredictable. A conclusion 
based on our simulation methodology is that 94% of dynamic branches can 
be solved with prediction information of up to 28 bits (some of them are 
solved with 16 bits, others with 20, 24 or 28 bits). 
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Figure 3.3. Reduction of average percentages of unbiased context instances 

(P<0.95) by extending the lengths of feature sets. 

 In another work we have studied the polarization of branches but 
using a little different simulation methodology [Oan06]. We evaluated local 
history concatenated with global history. The simulation methodology is 
presented in Figure 3.4.  
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Figure 3.4. Identifying unbiased branches by using the local history concatenated 

with the global history. 

The evaluation results presented in Table 3.16 show that these longer 
contexts, due to their better precision, have higher polarization index. 
Comparing our results, it is obvious that a certain feature set LH(p)-GH(p) 
from Table 3.16 is approximatively equivalent in terms of polarization rate 
with feature set GH(p+4) from Tables 3.8, 3.11 and 3.14. In other words, the 
same percentage of unbiased context instances is obtained for both LH(p)-
GH(p) and GH(p+4) feature sets, but the number of bits in the correlation 
information is different: (p+p) bits of local and global history, and 
respectively (p+4) bits of global history.  
 
 
Benchmark LH(0)-GH(0) 

->LH(16)-
GH(0) 

LH(16)-
GH(0) 
->LH(16)-
GH(16) 

LH(16)-
GH(16) 
->LH(20)-
GH(20) 

LH(20)-
GH(20) 
->LH(24)-
GH(24) 

LH(24)-
GH(24) 
->LH(28)-
GH(28) 

LH(28)-
GH(28) 
->LH(32)-
GH(32) 

bzip 26.42% 12.83% 7.53% 4.70% 3.08% 2.10% 
gzip 38.73% 24.58% 17.84% 12.67% 9.12% 6.16% 
mcf 5.76% 3.09% 2.44% 2.09% 1.78% 1.49% 
parser 20.61% 7.42% 4.77% 3.01% 1.98% 1.40% 
twolf 44.98% 23.94% 12.79% 8.28% 5.70% 3.90% 
gcc 10.85% 2.50% 1.41% 0.88% 0.58% 0.39% 
Average 24.56% 12.39% 7.80% 6.15% 4.33% 3.01% 

Table 3.16. The percentages of unbiased context instances, after each context 
length extension, obtained by using only the local history concatenated with the 

global history. 
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Taking into account that increasing the prediction accuracy with 1%, 
the IPC (instructions-per-cycle) is improved with more than 1% (it grows 
non-linearly) [Yeh92], there are great chances to obtain considerably better 
overall performances even if not all of the 6.19% difficult predictable 
branches will be solved. Therefore, we consider that this 6.19% represents a 
significant percentage of unbiased branch context instances, and in the same 
time a good improvement potential in terms of prediction accuracy and IPC. 
Focalising on these unbiased branches – in order to design some efficient 
path-based predictors for them [Nair95, Vin99b] – the overall prediction 
accuracy should increase with some percents, that would be quite 
remarkable. The simulation results also lead to the conclusion that as higher 
is the feature set length used in the prediction process, as higher is the 
branch polarization index and hopefully the prediction accuracy (Figure 
3.3). A certain large context (e.g. 100 bits) – due to its better precision – has 
lower occurrence probability than a smaller one, and higher dispersion 
capabilities (the dispersion grows exponentially). Thus, very large contexts 
can significantly improve the branch polarization and the prediction 
accuracy too. However, they are not always feasable for hardware 
implementation. The question is: what feature set length is really feasable 
for hardware implementation, and more important, in this case, which is the 
solution regarding the unbiased branches? In our opinion, as we’ll further 
show, a feasable solution in this case could be given by path-predictors. 
 
 
3.2.2. Path-based Correlation 
 

 The path information could be a solution for relatively short history 
contexts (low correlations). Our hypothesis is that short contexts used 
together with path information should replace significantly longer contexts, 
providing the same prediction accuracy. A common criticism for most of the 
present two-level adaptive branch prediction schemes consists in the fact 
that they used insufficient global correlation information [Vin99b]. There 
are situations when a certain static branch, in the same global history 
context pattern, has different behaviors (taken/not taken), and therefore the 
branch in that context is unbiased. If each bit belonging to the global history 
will be associated during the prediction process with its corresponding PC, 
the context of the current branch becomes more precisely, and therefore its 
prediction accuracy could be better. Our next goal is to extend the 
correlation information with the path, according to the above idea [Vin99b]. 
Extending the correlation information in this way, suggests that at different 
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occurrences of a certain static branch with the same global history context, 
the path contexts can be different. 
 We started our evaluations regarding the path, studying the gain 
obtained by introducing paths of different lengths. The analyzed feature 
consists of a global branch history of 16 bits and the last p PCs. We applied 
this feature only to dynamic branches that we already found unbiased 
(P<0.95) for local and global history of 16 bits and respectively global 
history XOR-ed by branch address on 16 bits. 
 
Benchmark LH(16)-

GH(16)- 
GHPC(16) 

LH(16)-GH(16)- 
GHPC(16) 
->PATH(1) 

LH(16)-GH(16)- 
GHPC(16) 
->PATH(16) 

LH(16)-GH(16)- 
GHPC(16) 
->PATH(20) 

LH(16)-GH(16)- 
GHPC(16) 
->LH(20) 

bzip 23.40% 23.35% 22.16% 20.38% 15.24% 
gzip 28.89% 28.88% 28.17% 27.51% 24.82% 
mcf 3.28% 3.28% 3.28% 3.20% 2.66% 
parser 12.95% 12.89% 12.01% 10.95% 9.18% 
twolf 32.41% 32.41% 31.46% 27.10% 24.83% 
gcc 3.91% 3.91% 3.56% 3.02% 2.26% 
Average 17.47% 17.45% 16.77% 15.36% 13.17% 
Gain 0.02% 0.70% 2.11% 4.30% 

Table 3.17. The gain introduced by the path of different lengths (1, 16, 20 PCs) 
versus the gain introduced by extended local history (20 bits). 

Column LH(16)-GH(16)-GHPC(16) from Table 3.17, presents the 
percentage of unbiased contexts for each benchmark. Columns LH(16)-
GH(16)-GHPC(16)→PATH(1), LH(16)-GH(16)-GHPC(16)→PATH(16) 
and LH(16)-GH(16)-GHPC(16)→PATH(20) presents the percentages of 
unbiased context instances obtained using a global history of 16 bits and a 
path of 1, 16 and respectively 20 PCs. The last column presents the 
percentages of unbiased context instances extending the local history to 20 
bits (without path). For each feature is presented the gain opposite to the 
first column average. It can be observed that a path of 1 introduces a not 
significant gain of 0.2%. Even a path of 20 introduces a gain of only 2.11% 
related to the more significant gain of 4.30% introduced by an extended 
local branch history of 20 bits. The results show (Table 3.17) that the path is 
useful only in the case of short contexts. Thus, a branch history of 16 bits 
compresses and approximates well the path information. In other words, a 
branch history of 16 bits spreads well the different paths that lead to a 
certain dynamic branch. 
 We continue our work evaluating – on all branches (non-iterative 
simulation) – the number of unbiased context instances (P<0.95) using as 
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prediction information paths of different lengths (p PCs) together with 
global histories of the same lengths (p bits).  
 

Bench. p=1 p=4 p=8 p=12 p=16 p=20 p=24 
bzip 58.54% 39.00% 37.24% 35.08% 32.41% 31.29% 28.01% 
gzip 49.85% 45.93% 43.58% 35.67% 34.10% 33.31% 33.02% 
mcf 27.85% 21.30% 6.38% 5.89% 6.35% 5.58% 5.20% 
parser 57.75% 44.64% 36.37% 30.63% 27.25% 23.00% 20.03% 
twolf 67.49% 59.07% 51.28% 43.51% 37.12% 31.47% 28.47% 
gcc 34.17% 26.34% 17.65% 12.61% 9.51% 7.85% 6.64% 
Average 49.28% 39.38% 32.08% 27.23% 24.46% 22.08% 20.23% 

Table 3.18. The percentages of unbiased context instances using as context only 
the global history of p bits. 

Bench. p=1 p=4 p=8 p=12 p=16 p=20 p=24 
bzip 38.99% 36.93% 34.41% 32.16% 30.15% 27.52% 23.90% 
gzip 48.53% 44.81% 42.20% 34.45% 33.21% 32.73% 32.31% 
mcf 26.01% 20.98% 6.23% 5.85% 6.48% 5.57% 5.19% 
parser 48.42% 39.50% 32.13% 27.48% 24.66% 20.82% 18.65% 
twolf 62.65% 55.68% 49.47% 42.60% 35.81% 30.66% 27.88% 
gcc 28.51% 20.42% 13.84% 10.53% 8.44% 7.12% 6.14% 
Average 42.19% 36.39% 29.71% 25.51% 23.13% 20.74% 19.01% 

Table 3.19. The percentages of unbiased context instances using as feature the 
global history of p bits together with the path of p PCs. 

The results are presented in Table 3.19, and in Figure 3.5 they are compared 
with the results obtained using only global history (see Table 3.18). In the 
case of the ‘mcf’ benchmark we obtained higher percentage of unbiased 
context instances when we extended the correlation information (Table 
3.19) from 12 bits of global history and 12 PCs (p=12) to 16 bits of global 
history and 16 PCs (p=16). This growth is possible because a certain biased 
context (P≥0.95), through extension is splitted into more subcontexts, and 
some of these longer contexts can be unbiased (P<0.95), thus increasing the 
number of unbiased branches. Again, the results obtained with long global 
history patterns (contexts) are closer to those obtained with path patterns of 
the same lengths, meaning that long global history (p bits) approximates 
very well the longer path information (p PCs). 
 As it can be observed in Figure 3.5, an important gain is obtained 
through path in the case of short contexts (p<16). A branch history of more 
than 12 bits, compresses well the path information, and therefore, in these 
cases, the gain introduced by the path is not significant.  
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Figure 3.5. The gain introduced by the path for different context lengths – 

SPEC2000 benchmarks. 

Desmet shows in her PhD thesis [Des06] that complete path (all 
branches) is more efficient than simple path (only conditional branches) 
from the entropy point of view. This is in contradiction with our results 
presented in Table 3.20, where we compared these types of path from the 
unbiased branch percentage point of view. This contradiction can be 
justified (?) by observing the following differences between our 
measurements: 

 

• Desmet measured per branch entropy and presented the 
average entropy, while we measured per branch-context 
polarization and presented the average percentage of branch 
contexts having polarization less than 0.95; 

• Desmet’s path consists in the PCs corresponding to the target 
instructions (as Nair did), while our path  consists in the PCs 
of branches; 

• Desmet uses short histories (p=1, 2, 5 PCs), while our 
evaluations were generated on a considerable larger interval 
(p=1, 4, 8, …, 24 PCs). 

 

As we explain below, paradoxically, the simple path is more rich in 
information than complete path (for the same number of PCs), justifying our 
results presented in Table 3.20. Let’s consider the following sequence of 
instructions: 

 

... bne1 ... bne2 ... jr ... bne3 ... bne4 ... bne5=? 
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If we use a path history of 4 PCs (p=4), then: 

• simple path = bne1, bne2, bne3, bne4; 
• complete path = bne2, jr, bne3, bne4. 

 

The unconditional branch jr brings less information, because it is 
always taken, and therefore, between bne2 and bne3 through jr only one 
path is possible, while through conditional branches two paths are possible. 
Thus, the path consisting exclusively in conditional branches is better than 
complete path (see Table 3.20). 

 
Context p=1 p=4 p=8 p=12 p=16 p=20 p=24 
GH (p bits) 49.28 39.38 32.08 27.23 24.46 22.08 20.23 
GH (p bits) +  
FullTargetPath (p PCs) 46.74 37.23 30.72 26.50 23.89 21.58 19.88 
GH (p bits) +  
FullPath (p PCs) 43.21 37.03 30.49 26.41 23.86 21.56 19.86 
GH (p bits) +  
CondTargetPath (p PCs) 45.13 36.41 29.76 25.56 23.18 20.77 19.09 
GH (p bits) +  
CondPath (p PCs) 42.19 36.39 29.71 25.51 23.13 20.74 19.01 

Table 3.20. Percentages of unbiased branches on the SPEC2000 benchmarks [%]. 

We also compared the path consisting in PCs of branches with the path 
consisting in PCs of target instructions. The path of branch PCs is slightly 
better, however the difference is unsignificant (see Table 3.20). 

Further, we present some results obtained applying the same 
methodology on Branch Prediction World Championship benchmarks – 
proposed by Intel [CBP, Loh05a]. We continue to evaluate – on all branches 
using the non-iterative simulation – paths of different lengths (p PCs) used 
together with global histories of the same lengths (p bits). The results are 
presented in Table 3.22, and in Figure 3.6 they are compared with the 
results obtained using only global history (see Table 3.21). 

As it can be observed from Tables 3.21, 3.22 and from Figure 3.6, the 
results produced (unbiased context instances ratio) by the Intel benchmarks 
have the same profile like that obtained on the SPEC2000 benchmarks. 
Actually, rich contexts (long patterns) reduce almost to zero the advantage 
introduced by using the path information. 
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Benchmark p=1 p=4 p=8 p=12 p=16 p=20 p=24 p=28 p=32 
dist-fp-1 25.70 21.11 18.45 16.38 14.61 12.64 10.62 9.74 9.46 
dist-fp-2 20.47 9.11 8.48 5.18 5.19 5.43 5.36 5.20 5.32 
dist-fp-3 3.04 1.82 0.95 0.18 0.00 0.00 0.00 0.00 0.00 
dist-fp-4 11.41 8.96 4.58 3.92 3.59 3.00 2.27 1.73 1.37 
dist-fp-5 68.91 30.11 16.81 6.09 5.19 5.19 4.46 3.72 3.72 
dist-int-1 47.98 40.00 28.97 24.93 20.52 16.39 14.01 10.80 9.38 
dist-int-2 55.98 48.24 39.61 32.81 27.46 22.97 19.54 17.19 15.11 
dist-int-3 66.26 55.74 47.23 38.35 31.21 26.20 22.74 20.10 17.56 
dist-int-4 45.31 42.29 29.53 21.11 16.50 13.77 11.18 9.92 8.89 
dist-int-5 2.50 1.48 1.10 0.91 0.78 0.72 0.67 0.67 0.66 
dist-mm-1 72.68 66.29 56.09 52.16 47.16 44.32 40.95 37.14 33.04 
dist-mm-2 39.43 37.51 33.48 30.65 28.65 26.75 24.79 22.56 20.20 
dist-mm-3 19.33 15.62 13.43 11.54 10.20 6.80 6.17 5.42 5.20 
dist-mm-4 8.41 6.11 6.86 5.91 5.01 4.24 3.13 3.08 2.98 
dist-mm-5 38.16 29.02 22.08 16.97 14.53 12.17 10.64 9.22 7.91 
dist-serv-1 16.63 11.60 7.92 6.01 5.21 4.03 3.17 2.75 2.57 
dist-serv-2 15.59 11.08 7.66 5.91 4.81 3.76 3.11 2.72 2.44 
dist-serv-3 29.87 25.68 20.52 16.84 14.06 12.37 9.02 8.26 7.47 
dist-serv-4 15.53 11.04 8.00 7.06 5.86 5.17 4.63 4.22 3.93 
dist-serv-5 15.94 11.27 7.95 7.21 6.17 5.38 5.08 4.55 4.15 
Average 30.96 24.20 18.99 15.51 13.33 11.56 10.08 8.95 8.07 

Table 3.21. The percentages of unbiased context instances using as context only 
the global history of p bits – Intel benchmarks [%]. 

 

Benchmark p=1 p=4 p=8 p=12 p=16 p=20 p=24 p=28 p=32 
dist-fp-1 25.72 20.97 17.44 15.56 13.11 11.54 10.03 9.16 8.93 
dist-fp-2 20.46 8.92 8.21 5.32 5.33 5.58 5.52 5.41 5.27 
dist-fp-3 2.77 1.73 0.86 0.00 0.00 0.00 0.00 0.00 0.00 
dist-fp-4 10.86 8.95 4.45 3.78 3.59 2.99 2.26 1.73 1.36 
dist-fp-5 65.40 28.47 15.91 5.56 5.19 4.46 3.72 3.72 3.72 
dist-int-1 44.02 32.67 26.51 23.05 18.05 15.16 12.40 10.28 8.63 
dist-int-2 52.98 42.77 34.33 28.62 24.01 20.79 18.07 16.03 14.25 
dist-int-3 64.24 55.42 46.82 38.04 31.10 26.15 22.56 20.00 17.51 
dist-int-4 43.98 38.08 26.22 20.29 15.74 12.88 10.87 9.78 8.84 
dist-int-5 2.27 1.22 0.93 0.82 0.75 0.71 0.66 0.66 0.65 
dist-mm-1 71.98 60.26 50.31 48.23 44.58 41.28 37.59 33.59 29.38 
dist-mm-2 36.70 35.11 31.19 29.01 27.52 26.09 24.00 21.65 19.18 
dist-mm-3 18.21 14.57 13.09 11.42 9.83 6.76 6.13 5.41 5.20 
dist-mm-4 8.33 5.86 6.86 5.90 5.00 4.21 3.12 3.08 2.98 
dist-mm-5 35.82 26.83 19.60 15.60 13.74 11.72 10.24 8.85 7.66 
dist-serv-1 14.71 9.12 6.57 5.08 4.32 3.37 2.98 2.52 2.19 
dist-serv-2 13.85 8.79 6.38 4.74 3.79 3.29 2.75 2.48 2.17 
dist-serv-3 27.88 20.43 15.28 14.02 12.50 11.45 8.36 7.61 6.94 
dist-serv-4 13.77 9.03 6.88 6.16 5.43 4.82 4.51 4.08 3.74 
dist-serv-5 14.16 9.42 6.77 6.47 5.74 5.16 4.93 4.38 3.91 
Average 29.41 21.93 17.23 14.38 12.46 10.92 9.53 8.52 7.63 

Table 3.22. The ratio of unbiased context instances using as features the global 
history of p bits together with the path of p PCs – Intel benchmarks. 
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Figure 3.6. The gain introduced by the path for different context lengths – Intel 

benchmarks. 

The main difference observed, analyzing the Figures 3.5 and 3.6, consists in 
the different values of these ratios (much bigger on SPEC benchmarks) – 
due to their different characteristics and functions [Loh05a]. However, it 
must mentioned that while SPEC benchmarks were simulated on 1 billion 
dynamic instructions the Intel benchmarks were entirely simulated, but the 
total number of dynamic instructions is lower (under 30 million). 

Summarizing the statistics reported on the SPEC2000 benchmarks, 
546 static branches generate 77,683,129 dynamic instances at average 
(142,120 instances / static branch). Focalizing now on those detected 
unbiased (with LH=28 bits, GH=28 bits, and GH XOR PC=28 bits), 113 
static branches generate 4,376,664 dynamic instances at average (38,731 
instances / static branch). Therefore the unbiased branches are generated by 
a few static branches having many dynamic instances. As a consequence, 
taking into account the enormous number of dynamic unbiased branches per 
a static branch, an adequate predictor has plenty of time to learn its 
behavior. The real problem is to find the right prediction information that 
changes such unbiased branches into biased ones. 
 

3.2.3. An Analytical Model 
 

High prediction accuracy is vital especially in the case of multiple 
instruction issue processors. Further, we assume the analytical model 
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proposed in [Cha94, Vin07], a superscalar processor that ignores stalls like 
cache misses and bus conflicts focalizing only about the penalty introduced 
by branch missprediction. Considering Branch Penalty (BP) as the average 
number of wasted cycles due to a branch missprediction for each dynamic 
instruction, it can be written the relation: 

 
BP= C·(1-Ap)·b·IR [wasted clock / instruction]  (3.4) 
 
Where we denoted: 
 
C = number of penalty cycles wasted due to a branch missprediction; 
Ap = prediction accuracy; 
b = the ratio of branches (the number of branches reported to the total 

number of instructions); 
IR = the average number of instructions that are executed per cycle 

(the superscalar factor of architecture; >1). 
 
Following, we computed how many cycles take the execution of each 

instruction for a real superscalar processor that includes a branch predictor: 

 
CPIreal = CPIideal + BP  [clock cycle / instruction]  (3.5) 
 

Where: 

 

CPIideal = represents the average number of cycles per instruction 
considering a perfect branch prediction (Ap=100% ⇒ 
BP=0). It is obvious that CPIideal < 1. 

 

CPIreal = represents the average number of cycles per instruction 
considering a real branch prediction (Ap<100% ⇒ BP>0 ⇒ 
CPIreal > CPIideal). 

 

Therefore, the real processing rate (the average number of instructions 
executed per cycle) results immediately from the following formula: 

 

IRreal  = 
BPCPI

1
CPI

1

idealreal +
=  [instruction / clock cycle] (3.6) 
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The relation (3.6) proves the non-linear correlation between 
processing rate (IR) and prediction accuracy (Ap). With these metrics, we 
adapted the model to our results obtained in Chapter 3. Further, we use the 
following notations: 

 
x = the ratio of biased context instances; 
1 - x = the ratio of unbiased context instances. 
 
In our simulations presented in [Gel06] we obtained using the gshare 

predictor [McFar93] the global prediction accuracy Apglobal = 93.60% 
(prediction applied to all branches) and respectively the accuracy of 
unbiased branch prediction Apunbiased = 72.2% (only unbiased branches were 
predicted). Since Apglobal represents a weighted mean among predictions 
accuracies applied both to bias and unbiased branches, it can be determined 
the biased prediction accuracy Apbiased. 

 
Apglobal = X * Apbiased + (1-x) * Apunbiased    (3.7) 
 

For previous example, 0.936 = 0.8253*Abiased + 0.1747*0.722, resulting that 
Apbiased = 0.9813. 

Obviously, predicting the unbiased branches with a more powerful 
branch predictor having, to say, 95% prediction accuracy, determines a gain 
proportional with ratio of unbiased context instances: Accuracy_gain 
=(0.95-0.722)*(1-x). More than that, this accuracy gain involves a 
processing rate speed-up according to (3.4) and (3.6). This gain justifies the 
importance and the necessity of finding and solving the difficult predictable 
branches. However, finding predictor that obtains so high prediction 
accuracy is beyond the scope of this paper. 

Therefore, further we determined how much is influenced the branch 
penalty (BP) by the increasing of context length and what is the speed-up in 
these conditions. For this, we softly modified Chang’s model [Cha94] by 
substituting Ap with our Apglobal, according to relation (3.7). Thus, the 
penalty introduced for missprediction of biased branches is the term (1-
Apbiased)*x, respectively for considered wrong prediction of all unbiased 
branches (Apunbiased=0) is the term (1-x). 

 
Model proposed by 

Chang 
Our modified model 

BP= C·(1-Ap)·b·IR BP=C·b·IR·[1– x·Apbiased]                         (3.8) 
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Figure 3.3 shows a decreasing of unbiased branches (1-x) by 
extending the context length that leads to a reduction of branch penalty (BP) 
according to (3.8), and implicitly to a greater IR according to (3.6). It can be 
written: 
 

Context (Features Set) Length  => x  => BP  => IR  => ∃ Relative 
Speed-up>0. 

 
Next, we computed the IR relative speed-up, varying the context length. 

Starting from the well known metric Speed-up 1
)16(
)(
≥=

IR
LIR , where L is the 

feature’s length, L ∈ {20, 24, and 28}, we obtained the relative speed-up:  
 

Relative Speed-up 0
)16(

)16()(
≥

−
=

IR
IRLIR    (3.9) 

 
Figure 3.7 illustrates the IR speed-up obtained extending the context. 

The baseline processor model has an IRideal of 4 [instruction / clock cycle] 
and incorporates a branch predictor with 98.13% prediction accuracy for 
biased branches. The considered number of penalty cycles wasted due to a 
branch missprediction in our model is 7. The ratio of simulated branches 
(the number of simulated branches reported to the total number of simulated 
instructions) is b=8% (see Table 3.1). 
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Figure 3.7. The IR relative speed-up obtained growing the context length. 
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Figure 3.7 illustrates not only the necessity of a greater number of prediction 
features to improve the processor performance, but also the necessity of new 
performing branch predictors that can consider a larger amount of 
information in making predictions (but whose size does not scale 
exponentially with the length of the input feature set). 

3.2.4. An Example Regarding Branch Prediction Contexts 
Influence 

 
In this section we analyze the contexts used by present day branch 

predictors (global and local histories respectively path information) from the 
point of view of their limits in predicting unbiased branches. The main idea 
is: in a perfect dynamic context all branch instances should have the same 
outcome. If the outcome is not the same a first solution might consists in 
extending the context information. After we varied the context length we 
observed that some dynamic contexts remained unpredictable despite of 
their length. 

Related to the first part of our investigation – identifying the 
difficult-to-predict branches and quantifying them on testing programs, we 
used the traces obtained based on the eight C Stanford integer benchmarks, 
designed by Professor John Hennessy (Stanford University), to be 
computationally intensive and representative of non-numeric code while at 
the same time being compact. All these benchmarks were compiled by the 
HSA gnu C compiler, which targets the HSA (Hatfield Superscalar 
Architecture) instruction set. A dedicated HSA simulator [Ste97] that 
generates the corresponding traces simulated the resulted HSA object code. 
These helpful tools were developed at the University of Hertfordshire, 
Research Group of Computer Architecture, UK. The average instruction 
number is about 273.000 and the average percentage of branch instructions 
is about 18%, with about 76% of them being taken. Derived from HSA 
traces, special traces were obtained, containing exclusively all the processed 
branches. Each branch belonging to these modified HSA traces is stored in 
the following format: branch's type, the address of the branch (PC – 
program counter) and its target address. Some of these benchmarks are well 
known as very difficult to be predicted. For example, as Mudge et al. proved 
very clearly [Mud96], 75% accuracy could be an ultimate limit on "quick-
sort" benchmark. 

Following our aims, we developed an original dedicated trace-driven 
simulator that uses the above-mentioned traces [Rad07]. The most important 
input parameters for this simulator are the local/global history length (HRl 
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bits (l) / HRg bits (k)), number of entries in prediction table, the type of 
predictor, the simulated benchmark. As outputs, the simulator generates 
prediction accuracy, number of difficult-to-predict branches, and other 
useful statistics. Further, we present partially the C and assembly code of 
Stanford Perm benchmark that generates a suite of permutations. We detect 
unbiased branches and we focused on two of the most important branch 
instructions (having PC=35 and PC=58 after compiling process). 

 
Permute (int n){ 
  int k; 
  pctr = pctr+1; 
  if(n != 1) {  # the first branch instruction analyzed (PC=35) 
    Permute(n-1); 
    for( k = n-1; k >= 1; k--){  # the second branch instruction analyzed (PC=58) 
 Swap(&permarray[n], &permarray[k]); 
 Permute(n-1); 
 Swap(&permarray[n], &permarray[k]); 
    }; 
  } 
} 
 
 
_Permute: 
 SUB SP, SP, #128 
 ST 0(SP), RA 
 ST 8(SP), R17 
 ST 12(SP), R18 
 ST 16(SP), R19 
 ST 20(SP), R20 
 MOV R20, R5 
 LD R13, _pctr 
 ADD R13, R13, #1 
 ST _pctr, R13 
 EQ B1, R20, #1 
               BT B1, L8 (#0) # after compiling process this branch has the address 35 

(PC=35) 
 ADD R17, R20, #-1 
 MOV R5, R17 
 BSR RA, _Permute (#0)  
 MOV R18, R17 
 LES B1, R18, #0 
 BT B1, L8 (#0)  
 ASL R13, R20, #2 
 MOV R7, #_permarray 
 ADD R19, R13, R7 
 ASL R13, R18, #2 
 ADD R17, R13, R7 



Finding Difficult-to-Predict Branches 51 

L12: 
 MOV R5, R19 
 MOV R6, R17 
 BSR RA, _Swap (#0)  
 ADD R5, R20, #-1 
 BSR RA, _Permute (#0)  
 MOV R5, R19 
 MOV R6, R17 
 BSR RA, _Swap (#0) 
 ADD R17, R17, #-4 
 ADD R18, R18, #-1 
 GTS B1, R18, #0 
              BT B1, L12 (#0) # after compiling process this branch has the address 58 

(PC=58) 
 

In the following simulations [Flo07] the settled parameters are: Path = not 
selected, Unbiased polarization degree = 0.95, HRl and HRg being the local 
and global history. We define polarization index (bias) of a certain branch 
context as:  

)
NTT

NT ,
NTT

Tmax( bias
++

=     (3.9) 

where T and NT represent number of “taken” respective “not taken” branch 
instances corresponding to that certain context. 

 
1. Parameters: HRl = not selected, HRg on 3 bits, => Unbiased contexts: 25.0[%] 
From the unbiased branches list we selected just two branch instructions in two global 
contexts: 
PC: 35 HRg: 101 T: 2520 NT: 1100 Bias: 0.696 
PC: 58 HRg: 111 T: 1419 NT: 3620 Bias: 0.718 
2. Parameters: HRl = not selected, HRg on 4 bits, => Unbiased contexts: 17.813[%] 
PC: 35 HRg: 0101 T: 840 NT: 260 Bias: 0.763 
PC: 35 HRg: 1101 T: 1680 NT: 840 Bias: 0.667 
PC: 58 HRg: 0111 T: 1419 NT: 1100 Bias: 0.563 
PC: 58 HRg: 1111 T: 0 NT: 2520 Bias: 1.000 => The branch with the address PC: 58 
in context HRg: 1111 became fully biased. Practically it doesn’t appear in the unbiased 
branch list. 
3. Parameters: HRl on 1 bit, HRg on 4 bits, => Unbiased contexts: 17.813[%] 
PC: 35 HRg: 0101 HRl: 0 T: 840 NT: 260 Bias: 0.763 
PC: 35 HRg: 0101 HRl: 1 – this context doesn’t occur 
PC: 35 HRg: 1101 HRl: 0 T: 1680 NT: 840 Bias: 0.667 
PC: 35 HRg: 1101 HRl: 1 – this context doesn’t occur 
PC: 58 HRg: 0111 HRl: 0 T: 1419 NT: 1100 Bias: 0.563 
PC: 58 HRg: 0111 HRl: 1 – this context doesn’t occur 
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4. Parameters: HRl on 2 bits, HRg on 4 bits, => Unbiased contexts: 9.673[%] 
PC: 35 HRg: 0101 HRl: 00 T: 840 NT: 260 Bias: 0.763 
PC: 35 HRg: 0101 HRl: 10 – this context doesn’t occur 
PC: 35 HRg: 1101 HRl: 00 – this context doesn’t occur 
PC: 35 HRg: 1101 HRl: 10 T: 1680 NT: 840 Bias: 0.667 
PC: 58 HRg: 0111 HRl: 00 T: 1419 NT: 260 Bias: 0.845 
PC: 58 HRg: 0111 HRl: 10 T: 0 NT: 840 Bias: 1.000=> The branch with the address 
PC: 58 in context HRg: 0111 and HRl: 10 became fully biased. Practically it doesn’t 
appear in the unbiased branch list. 
… 
 

5. Parameters: HRl on 2 bits, HRg on 7 bits, => Unbiased contexts: 9.668[%] 
PC: 58 HRg: 1110111 HRl: 00 T: 1419 NT: 260 Bias: 0.845 
6. Parameters: HRl on 2 bits, HRg on 8 bits, => Unbiased contexts: 8.134[%] 
PC: 58 HRg: 01110111 HRl: 00 T: 579 NT: 260 Bias: 0.690 
PC: 58 HRg: 11110111 HRl: 00 T: 840 NT: 0 Bias: 1.000=> The branch with the 
address PC: 58 in context HRg: 11110111 and HRl: 00 became fully biased. 
Practically it doesn’t appear in the unbiased branch list. 
Conclusion: As it can be observed, increasing the context length, some branches in 
certain contexts became fully biased, but a great percentage still remains unbiased. 

 
Comparing the previous results it can be observed that as or richer  

the context became, as smaller the unbiased branches percentage became. 
From the 1st case to 2nd one, the unbiased branches percentages decrease 
with 7.187% and it can be observed how the two unbiased branches, in 
small contexts, are still unsolved. However, the branch with the address PC: 
58 became fully biased in context HRg: 1111 decreasing the number of 
unbiased branches with 2520. Practically it does not appear in the unbiased 
branch list. In the 3rd case (adding one bit of local history) the unbiased 
branches percentage remains unchanged. In the 4th local history is set on 2 
bits and much more contexts became biased (the unbiased branches 
percentage decreases with 8.14%). Although, there are some contexts that 
remain unbiased (see above: PC: 35 HRg: x101 HRl: x0 – where x could be 
0 or 1). 

Analyzing the code sequence it can be observed that to reach 
conditional branch 58, the previously 3 branches are every time Taken 
(return from permute function, call of swap function and return – not 
necessarily correlated with the branch 58). One reason for the larger 
percentage of unbiased branches refers to the fact that the branches within 
the global history length may not have correlation with the current branch, 
or the relevant history might be too far away. If the context would permit it 
could be seen a correlation between branches situated at a large distance in 
the dynamic instruction stream. Recurrence and function calls hide some 
branches that are really correlated with the analyzed one. Also, the local 



Finding Difficult-to-Predict Branches 53 

correlation reduces the noise included in global history. Similar examples 
we found in tower benchmark that solves the Hanoi towers problem. 

The insufficiency of global correlation information is remarked also 
in the case of programs or data structures, which produce a variable number 
of history bits as the data changes (data correlation). This occurs in the link 
lists or trees cases where the address of an element is tested (usually 
comparison with 0) and then a recurrent call of the same function is 
generated to test the next element in the tree (left or right sub-tree). The 
same situation does occure in the hash table cases having link lists to solve 
the collisions. A possible solution could be to use data values or structural 
information to keep the predictor more synchronized with data. We tried 
such an approach in [Gel07b]. 



4. Predicting Unbiased Branches 

 This section presents some important present-day branch predictors 
and, respectively, some proposed condition-history-based branch predictors, 
all of them being used to evaluate, in terms of prediction accuracy, the 
unbiased branches identified in [Gel06, Vin06]. 

4.1. The Perceptron-Based Branch Predictor 
 

Jiménez and Lin [Jim01] proposed a two-level scheme that uses fast 
single-layer perceptrons instead of the commonly used two-bit saturating 
counters. The branch address is hashed to select the perceptron, which is 
used to generate a prediction based on global branch history. In [Jim02] the 
authors developed a perceptron-based predictor that uses both local and 
global branch history in the prediction process. Figure 4.1 presents the 
architecture of the perceptron-based branch predictor. 
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Figure 4.1. The perceptron-based branch predictor. 
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The lower part of the branch address (PC) selects a perceptron in the table of 
perceptrons (weights’ matrix) and, respectively a local history register in the 
local branch history table. Both local and global branch history are used as 
inputs for the selected perceptron in order to generate a prediction. 
 

4.2. The Idealized Piecewise Linear Branch Predictor 
 
 The piecewise linear branch prediction [Jim05], is a generalization 
of perceptron branch prediction [Jim01] and path-based neural branch 
prediction [Jim03]. The path-based neural predictor begins the branch’s 
output computation in advance of the prediction, each computation step 
being processed as soon as a new element of the path is executed. Thus, the 
vector of weights used to generate prediction, is selected according to the 
path leading up to a branch – based on all branch addresses belonging to 
that path – rather than according to the current branch address alone as the 
original perceptron does. This selection mechanism improves significantly 
the prediction accuracy, because, due to the path information used in the 
prediction process, the predictor is able to exploit the correlation between 
the output of the branch being predicted and the path leading up to that 
branch. On the other hand, the prediction latency is almost completely 
hidden because the output’s computation begins far in advance of the 
effective prediction. The most critical-timing operation is the sum of the 
bias weight and the current partial sum. To generate a prediction, the 
correlations of each component of the path are aggregated. This aggregation 
is a linear function of the correlations for that path. Since many paths are 
leading to a branch, there are many different linear functions for that branch, 
and they form a piecewise-linear surface separating paths that lead to 
predicted taken branches from paths that lead to predicted not taken 
branches. The piecewise linear branch prediction [Jim05], is a 
generalization of perceptron branch prediction [Jim01], which uses a single 
linear function for a given branch, and respectively path-based neural 
branch prediction [Jim03], which uses a single global piecewise-linear 
function to predict all branches. The piecewise linear branch predictors use a 
piecewise-linear function for a given branch, exploiting in this way different 
paths that lead to the same branch in order to predict – otherwise linearly 
inseparable – branches. The predictor has the same architecture as the 
perceptron-based branch predictor (see Figure 4.1). The weight selection 
mechanism of the idealized piecewise linear branch predictor is presented in 
Figure 4.2, where GH is the global history, PC is the branch’s address and 



56 A Systematic Approach to Predict Unbiased Branches 

 

GA is the path – an array of the addresses afferent to the last executed 
branches. Thus, the weight Wbpg corresponds to branch b ( Bb ≤≤1 ), its 
global history bit g ( Gg ≤≤1 ) and the pth PC ( Pp ≤≤1 ) from its path. 
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Figure 4.2. The weight selection mechanism of the idealized piecewise linear 

branch predictor. 

For the Idealized Piecewise Linear Branch Predictor we used dynamically 
adjusted history lengths [Jim05]. The predictor counts the number of static 
branches whose bias magnitude, noted |W0|, exceeds 2. If this number 
exceeds 300, then the predictor switches to lower global and local history 
lengths, otherwise, it uses higher global and local history lengths. This 
heuristic is applied after 300,000 branches have passed. 
 Related to Jiménez’s research, we gave an original interpretation of 
his dynamically adjusting history length mechanism [Jim05], through our 
previously introduced “unbiased branches” concept [Gel06, Vin06]. Thus, 
his heuristics work as follows: if more than 300 “relatively biased” branches 
are encountered (branches having |W0|>2), then it switches to lower 
global/local history length. Otherwise (meaning that there were encountered 
many “perfectly unbiased” branches, having |W0|≤2) it switches to higher 
global/local history length. From our point of view, this is justified by the 
fact that increasing history length reduces the number of unbiased branches.  
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4.3. The Frankenpredictor 
 
 The Frankenpredictor [Loh05a] is a gskew-agree global history 
predictor combined with a path-based neural predictor. The prediction 
mechanism of the Frankenpredictor is presented in Figure 4.3. 
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Figure 4.3. The Frankenpredictor’s architecture. 

The gskew-agree predictor avoids interference by mapping potential 
conflicting branches to different entries from three different tables. Three 
different predictions are provided, the final prediction being made by taking 
majority vote. The agreement approach uses a default BTFNT (backward 
taken forward not taken) static prediction (bias) for each branch. The 
predictions (P1, P2 and P3) generated by the selected pattern history table 
entries are further compared with the bias. The neural predictor provides the 
ability of working with long branch histories and it also provides the 
hybridization by including the predictions of the gskew-agree predictor as 
additional bits in the perceptron’s input vector – the agreement bits (A1, A2 
and A3) provided by the three PHTs (Ai is 1 if Pi agrees with the bias and 0 
otherwise, 1≤i≤3) and the majority vote (AM). 
 

4.4. The O-GEHL Predictor 
 
 The Optimized GEometric History Length (O-GEHL) predictor 
[Sez05] uses M distinct prediction tables indexed with hash functions of the 
branch address and the global branch history. Distinct history lengths of up 
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to 200 bits and a path history of up to 16 bits, consisting of 1 address bit per 
branch, are used to index the prediction tables. Table T0 is indexed using the 
branch address. The history lengths used to index tables Ti, 1≤i<M, form a 
geometric series: 
 

)1()( 1 LiL i ⋅= −α    (4.1) 
 
The prediction tables store predictions as signed counters. To compute a 
prediction, a single counter is read from each prediction table. The 
prediction is computed as the sign of the sum S of the M counters. The 
prediction is taken if S is positive and not-taken otherwise. The prediction 
mechanism of the O-GEHL predictor is presented in Figure 4.4. 
 

+ Prediction = Sign+ Prediction = Sign

 
Figure 4.4. The O-GEHL predictor. 

 
 

4.5. Value-History-Based Branch Prediction with 
Markov Models 
 

The context-based predictor predicts the next value based on a 
particular stored pattern (context) that is repetitively generated in the value 
sequence. Theoretically they can predict any stochastic repetitive sequences. 
A context predictor is of order k if its context information includes the last k 
values, and, therefore, the search is done using this pattern of k values 
length. In fact, in this case the prediction process is based on a simple 
Markov model [Rab89].  
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Figure 4.5. A Markov chain with 3 states. 

A first order discrete Markov process may be described at any time as being 
in one of a set of N distinct states }...,,,{ 21 NSSSS = , as illustrated in 
Figure 4.5. A full probabilistic description of discrete Markov chain requires 
specification of the current state as well as all the predecessor states (the 
current state in a sequence depends on all the previous states). For the 
special case of a discrete, first order, Markov chain, this probabilistic 
description is truncated to just the current and predecessor state (the current 
state depends only on the previous state): 
 

][...],,[ 121 itjtktitjt SqSqPSqSqSqP ====== −−−   (4.2) 
 

where tq  is the state at time t. Thus, for a first order Markov chain with N 
states, the set of transition probabilities between states Si and Sj is }{ ijaA = , 

where ][ 1 itjtij SqSqPa === − , Nji ≤≤ ,1 , having the properties 

0≥ija  and 1
1

=∑
=

N

j
ija . 

 For a Markov chain of order R the probabilistic description is 
truncated to the current and R previous states (the current state depends on 
R previous states). The following example shows the necessity of using 
superior order Markov models. If the sequence of states is 
AAABCAAABCAAA, the Markov models of order 1 and respectively 2 
mispredict A, and only a Markov Model of order 3 predicts correctly the 
next state B. This example is also presented in Figure 4.6. 
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Figure 4.6. Markov predictors of different orders. 

The predictors that implement the “Prediction by Partial Matching” 
algorithm (PPM) [Saz97] represent an important class of context-based 
predictors. Mudge et al. [Mud96] demonstrates that all two-level adaptive 
predictors implement special cases of the PPM algorithm that is widely used 
in data compression. It seems that PPM provides the ultimate predictability 
limit of two-level predictors. The PPM-based predictor contains a set of 
simple Markov predictors as it can be seen in Figure 4.6. It is predicted the 
value that followed the context with the highest frequency. In the case of 
complete-PPM predictor, if a prediction cannot be generated with the 
Markov predictor of order k, then the pattern length is shortened and the 
Markov predictor of order k-1 tries to predict and so on. 

 

4.5.1. Local Branch Difference Predictor 
 
Figure 4.7 presents the speculative branch execution mechanism 

using a local PPM branch-difference predictor. The Branch Difference 
History Table (BDHT) maintains for each static branch the values or the 
signs of the inputs’ differences (two approaches) corresponding to the 
branch’s last h dynamic instances (B1, B2, ..., Bh). It would be possible to 
keep the differences corresponding to the previous h branches, therefore a 
global correlation approach instead of a local approach. Obviously, hybrid 
global-local approaches should be possible and useful too. Regarding the 
approach that uses only the signs of the input differences, a value of 1 in the 
history indicates that the corresponding branch difference was positive, a -1 
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indicates a negative difference, while a 0 indicates equality between the 
branch inputs. The BDHT entry is selected by the branch address (PC of 
B0). The branch differences from the selected BDHT entry represent the 
PPM’s input. Thus, the sign of the input difference (-1, 1, or 0) 
corresponding to the current branch (B0) is predicted, using the complete-
PPM algorithm of order k, where k<h (see Figure 4.6). The branch B0 is 
executed speculatively using the predicted inputs’ difference only if the 
considered pattern of length k is repeated in the string of last h differences 
with a frequency greater or equal than a certain threshold. 
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Figure 4.7. Speculative branch execution using local complete-PPM branch-
difference predictors. 

 

4.5.2. Combined Global and Local Branch Difference 
Predictor 
 

Figure 4.8 presents the hybrid speculative branch execution 
mechanism using a combined global and local PPM-based branch-difference 
predictor. The Global History Register (GHR) contains the global history: 
the global branch difference history or the global branch outcome history 
(two different approaches). For each global history pattern, a distinct BDHT 
is maintained. Thus, the BDHT is selected by the GHR. A certain BDHT 
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contains for each static branch the inputs’ differences corresponding to the 
branch’s last h dynamic instances (B1, B2, ..., Bh). The selected BDHT is 
indexed by the branch address (PC of B0). The branch differences from the 
selected BDHT entry represent the input for the PPM. Thus, the sign of the 
input difference (-1, 1, or 0) corresponding to the current branch (B0) is 
predicted, using the complete-PPM algorithm of order k, where k<h (see 
Figure 4.6). The branch B0 is executed speculatively using the predicted 
inputs’ difference only if the considered pattern of length k is repeated in the 
string of last h differences with a frequency greater or equal than a certain 
threshold. 
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Figure 4.8. Speculative branch execution using global-local complete-PPM 

branch-difference predictors. 

 

4.5.3. Branch Difference Prediction by Combining Multiple 
Partial Matches 

 
Figure 4.9 presents the speculative branch execution mechanism 

using the Branch-Difference Predicion by Combining Multiple Partial 
Matches algorithm. The Branch Difference History Table (BDHT) 
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maintains for each static branch the signs of the inputs’ differences (a value 
of 1 in the history indicates that the corresponding branch difference was 
positive, a -1 indicates a negative difference, and a 0 indicates equality 
between the branch’s inputs) corresponding to the branch’s last h dynamic 
instances (B1, B2, ..., Bh). A BDHT entry is selected by the branch’s address 
(PC of B0), as in the previous approaches. The branch differences from the 
selected BDHT entry represent the input for Markov predictors of different 
orders. Thus, the sign of the input difference (-1, 1, or 0) corresponding to 
the current branch (B0) is predicted using multiple Markov predictors of 
orders ranging between [1, n], n<h (see Figure 4.9). The final branch 
difference prediction is generated  through the majority vote. 
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Figure 4.9. Speculative branch execution by combining multiple Markov branch-

difference predictions. 

Another possibility is to provide the final branch difference prediction 
through confidence-based voting. In this case, each BDHT entry maintains n 
saturated confidence counters associated to the n Markov predictors. The 
confidence counters ranging in our application between [-4, 4] are updated 
only if the corresponding Markov predictors provided a prediction (the 
pattern of length k, 1≤ k≤n, was found at least once in the history of h 
values), by incrementing them in the case of a correct prediction and 
decrementing them otherwise. The confidence-based voting takes the 
majority, considering each Markov prediction as many times as the 
corresponding counter’s value shows (only if this value is greater than zero). 
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We implemented and evaluated both these voting methods. Finally, the 
branch B0 is executed speculatively using the predicted inputs’ difference. 
 

4.6. Experimental Results 
 

The perceptron and our branch difference predictors were 
implemented by extending the sim-bpred simulator from SimpleSim-3.0 
[Sim]. We also implemented the unbiased branch selection mechanism and, 
thus, the predictors can be evaluated on unbiased branches too. We evaluate 
programs from the SPECcpu2000 benchmark suite, especially those that 
indicated a high percentage of unbiased branches [Gel06, Vin06]. The 
Championship Branch Prediction (CBP-1) simulators afferent to the 
Frankenpredictor [Loh05a] and respectively the Piecewise Linear Branch 
Predictor [Jim05] were extended to work with the same unbiased branch 
selection mechanism. In order to exploit these predictors we used the CBP-1 
branch prediction framework which includes twenty traces (5 integer 
programs, 5 floating point, 5 multimedia applications and 5 server 
benchmarks) and a driver that reads the traces and calls the branch predictor 
[CBP04]. The traces are approximately 30 million instructions long and 
include both user and system codes. The two predictors were implemented 
within the constraints of a storage budget of (64K + 256) bits. 

All simulation results are reported on 1 billion dynamic instructions 
skipping the first 300 million instructions from the SPEC2000 benchmarks 
[SPEC] and, respectively, on all instructions from the INTEL benchmarks 
[CBP04]. We note with LH(p)-GH(q) prediction information consisting in 
local history (LH) of p bits, and global history (GH) of q bits. We also note 
with PPM(tdim, hlen, plen, thres, htype) a complete-PPM branch-difference 
predictor using a Branch Difference History Table (BDHT) of tdim entries, 
a history length of hlen differences, a search pattern length of plen 
(specifying the current state), a threshold of thres, and considering a history 
of branch difference values or branch difference signs (htype=value/sign). 

 

4.6.1. Evaluating Neural-Based Branch Predictors 
 

In the first stage of this work, we’ll measure with present-day branch 
predictors the prediction accuracy on all branches and, respectively, only on 
the final list of unbiased branches identified in [Vin06], using different local 
and global history lengths. Table 4.1 shows comparatively the results 
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obtained on the SPEC2000 benchmarks using a simple perceptron-based 
predictor integrated into Simplesim-3.0 [Sim]. 
 

 LH(28)-GH(0) LH(0)-GH(28) LH(28)-GH(28)LH(14)-GH(14) LH(28)-GH(40) 
Bench All Unb. All Unb. All Unb. All Unb. All Unb. 
bzip 87.3 70.1 90.7 74.8 90.6 74.8 90.5 74.8 90.6 74.7 
gzip 85.7 77.9 91.5 79.1 91.9 79.3 91.6 79.3 92.1 79.9 
mcf 87.3 51.0 98.5 69.4 98.7 72.5 98.3 67.5 98.8 73.7 
parser 85.2 60.7 93.5 69.0 93.9 69.7 93.3 68.4 94.0 70.6 
twolf 79.9 60.2 86.2 66.2 87.0 68.2 85.6 66.0 87.2 68.2 
Mean 85.1 64.0 92.1 71.7 92.4 72.9 91.9 71.2 92.5 73.4 

Table 4.1. The prediction accuracies obtained with the perceptron predictor using 
different prediction information on all branches and, respectively, only on unbiased 

branches from the SPEC2000 benchmarks. We used a table of perceptrons with 
256 entries. 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

LH
(28

)-G
H(0)

LH
(0)

-G
H(28

)

LH
(28

)-G
H(28

)

LH
(14

)-G
H(14

)

LH
(16

)-G
H(0)

LH
(0)

-G
H(16

)

LH
(8)

-G
H(8)

LH
(28

)-G
H(40

)

History

Pr
ed

ic
tio

n 
ac

cu
ra

cy

All
Unbiased

 
Figure 4.10. The average prediction accuracies obtained with the perceptron 

predictor using different prediction information on all branches and, respectively, 
only on unbiased branches from the SPEC2000 benchmarks. We used a table of 

perceptrons with 256 entries. 

Table 4.1 intends to find an optimal LH(p)-GH(q) configuration within an 
enormous space of possible solutions. We did not use a well-known 
heuristic search method (e.g. genetic algorithms), preferring an empirical 
one based on our experience in the branch prediction field. As Table 4.1 and 
Figure 4.10 show, when we used the best configuration of the perceptron 
predictor (a local history of 28 bits and a global history of 40 bits – 
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determined based on laborious simulations), we obtained a prediction 
accuracy of 92.58% on all branches and, respectively, of only 73.46% on the 
unbiased branches. 

Figures 4.11 and 4.12 show comparatively on the SPEC2000 
benchmarks the prediction accuracies obtained with different present-day 
branch predictors on all branches and, respectively, only on the final list of 
unbiased branches identified in [Gel06, Oan06] using the XOR between the 
global history of 32 bits and the path of 32 PCs.  
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Figure 4.11. The average prediction accuracies obtained with the Frankenpredictor 

on the SPEC2000 benchmarks. 
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Figure 4.12. The average prediction accuracies obtained with the piecewise linear 

branch predictor on the SPEC2000 benchmarks. 
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We measured the prediction accuracies with the Frankenpredictor [Loh05a], 
and the Idealized Piecewise Linear Branch Predictor [Jim05], both described 
in the previous sections. We used the original Idealized Piecewise Linear 
Branch Predictor where the global history length is dynamically adjusted 
between 18 and 48 bits and, respectively, the local history length between 1 
and 16 bits. For the Frankenpredictor we used a global history of 59 bits. 
Even if the Idealized Piecewise Linear Branch Predictor doesn’t solve 
satisfactory the unbiased branches problem, it predicts them with an average 
accuracy of 77.3% that is better than all the other simulated branch 
prediction schemes. 
 

  Frankenpredictor Piecewise 

Benchmark All Unb. All Unb.
dist-fp-1 98.5 71.9 98.4% 78.2
dist-fp-2 99.1 95.4 99.0% 97.5
dist-fp-3 99.6 96.0 99.6% 99.1
dist-fp-4 99.9 90.3 99.8% 95.2
dist-fp-5 99.9 84.7 99.8% 96.8
dist-int-1 97.6 79.9 98.3% 87.9
dist-int-2 93.4 81.5 94.0% 85.7
dist-int-3 91.3 71.7 93.2% 79.2
dist-int-4 98.9 91.4 98.6% 92.1
dist-int-5 99.7 74.1 99.7% 88.0
dist-mm-1 92.8 83.8 93.0% 85.7
dist-mm-2 90.6 84.6 91.0% 89.3
dist-mm-3 99.1 67.9 99.4% 87.0
dist-mm-4 98.6 98.7 98.6% 98.9
dist-mm-5 95.2 85.4 95.2% 88.8
dist-serv-1 97.8 83.5 97.5% 89.4
dist-serv-2 97.7 83.7 97.6% 89.2
dist-serv-3 95.6 84.8 95.1% 88.9
dist-serv-4 96.3 77.5 96.4% 83.2
dist-serv-5 96.7 75.2 96.7% 82.2
Average 96.9 83.1 97.0% 89.1

Table 4.2. The prediction accuracies obtained with the piecewise linear branch 
predictor and the Frankenpredictor on the Intel benchmarks. 

Table 4.2 and Figures 4.13 and 4.14 show comparatively on the CBP-1 Intel 
benchmarks [CBP04] the prediction accuracies obtained on all branches 
and, respectively, only on the final list of unbiased branches identified in 
[Gel06, Oan06] using the XOR between the global history of 32 bits and the 
path of 32 PCs. We measured the prediction accuracies on the Intel 
benchmarks with the Idealized Piecewise Linear Branch Predictor [Jim05] 
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and the Frankenpredictor [Loh05a]. We used for both predictors the same 
configurations as on the SPEC2000 benchmarks. Even if the Idealized 
Piecewise Linear Branch Predictor doesn’t solve satisfactory the unbiased 
branches problem, it predicts them with an average accuracy of 89.1% that 
is better than all the other simulated branch prediction schemes. However, 
we are reserved regarding the CBP-1 Intel benchmarks due to their 
shortness. Furthermore, the Second Championship Branch Prediction 
Competition (CBP-2) [CBP06] have used all the twelve CPUintSPEC2000 
benchmarks and eight JavaSPECjvm98 benchmarks. 
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Figure 4.13. The average prediction accuracies obtained with the Frankenpredictor 

on the Intel benchmarks. 
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Figure 4.14. The average prediction accuracies obtained with the piecewise linear 

branch predictor on the Intel benchmarks. 
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We empirically found out that the behavior of difficult branches – as 
we defined them – cannot be sufficiently learned neither by neural 
predictors. Figures 4.11, 4.12, 4.13 and 4.14 confirm us again, that the 
unbiased branches, identified in our previous work [Vin06, Gel06], are 
hard-to-predict with present-day branch predictors. 
 

4.6.2. Evaluating the O-GEHL Predictor 
 

We have also evaluated the Optimized GEometric History Length 
(O-GEHL) predictor [Sez05], described in section 4.4 (see Figure 4.4). We 
used an 8-table O-GEHL predictor. The experimental results obtained on the 
SPEC2000 benchmarks are presented in Figure 4.15. 
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Figure 4.15. The average prediction accuracies obtained with the O-GEHL 

predictor on the SPEC2000 benchmarks. 

As it can be observed, the neural branch predictors provided higher 
prediction accuracy then the O-GEHL predictor (see comparatively Figures 
4.11, 4.12 and 4.15). 
 

4.6.3. Evaluating Local Branch Difference Predictors 
 

We’ll continue this work by evaluating the prediction accuracy of 
the complete-PPM branch-difference predictor (see Figure 4.7) on all 
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branches and, respectively, only on the final list of unbiased branches 
(identified in [Vin06]). We started our simulations by evaluating different 
local history lengths. Table 4.3 shows comparatively the results obtained on 
the SPEC2000 benchmarks, using a history of branch difference values and, 
respectively, a history of branch difference signs (-1 if negative, 1 if 
positive, or 0), considering an unlimited BDHT, a pattern length of 3, and a 
threshold of 1. 
 

 History of Branch 
Difference Values  

History of Branch 
Difference Signs 

History All Unb. All Unb.
LH(8) 85.78% 64.76% 86.56% 65.33%
LH(16) 86.84% 66.35% 88.34% 68.26%
LH(24) 86.79% 66.52% 88.66% 68.61%
LH(32) 86.83% 66.87% 88.88% 68.78%
LH(40) 86.81% 66.91% 89.03% 68.98%
LH(48) 86.77% 67.04% 89.11% 69.12%
LH(56) 86.78% 67.33% 89.19% 69.23%
LH(64) 86.76% 67.43% 89.26% 69.37%
LH(128) 86.56% 67.52% 89.45% 69.70%
LH(256) 86.39% 67.94% 89.58% 69.75%

Table 4.3. The average prediction accuracies on all branches and, respectively, 
only on unbiased branches from the SPEC2000 benchmarks, using branch-

difference predictors with different local history lengths. 
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Figure 4.16. The average prediction accuracies on the SPEC2000 benchmarks, 
using a PPM(tdim=unlimited, hlen=varied, plen=3, thres=1, htype=value and 

sign) branch difference predictor with different local history lengths. 
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Figure 4.16 shows the difference’s value prediction accuracies 
obtained on the SPEC2000 benchmarks, using an unlimited BDHT 
containing the values respectively the signs of the last branch differences, a 
pattern length of 3, and a threshold of 1. As simulations show (Figure 4.16), 
branch differences can be better predicted when only difference signs are 
used as history instead of difference values. Consequently, the sign of the 
current branch difference is better correlated with the signs of its previous 
differences than with the values of those differences. 

The experimental results also show that the performance is relatively 
saturated starting with a local history length of 24 bits. Why is better to use 
only the signs of differences as history information instead of the values of 
differences? The number of distinct symbols that can occur in a value 
history is huge reported to only three symbols that can appear in a sign 
history. Thus, the frequency of symbols in a value history is very low. In the 
following example only a Markov predictor of order 1 can be used for the 
value history, and it generates a misprediction, while in the case of the sign 
history, even a Markov predictor of order 5 can be used, which generates the 
correct prediction: 
 
      Value history: -126, -34,  7, -42, -28, 75, -829, -7982, 102, -542, -42, ?     
      Sign history: -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, ?  
 

Obviously, through a sign history much deeper correlations can be 
exploited than with a value history.  
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Figure 4.17. The average usage rates of Markov predictors using 

PPM(tdim=unlimited, hlen=24, plen=3, thres=1, htype=sign and value) branch 
difference predictors on all branches. 
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Figure 4.17 compares the sign history with the value history in terms of 
usage rate afferent to Markov predictors of different orders. We used the 
optimal history length 24 and a pattern length of 3, and therefore, we 
evaluated the usage rates corresponding to Markov predictors of orders 0, 1, 
2 and 3. As Figure 4.17 shows, more often are used superior order Markov 
predictors by using a sign history, and thus, deeper correlations can be 
exploited. Therefore, we continued by evaluating different pattern lengths 
using an unlimited BDHT, a sign history of 24 branch difference signs, and 
a threshold of 1. As Figure 4.18 shows, the best PPM’s pattern length is 3, 
considering the optimal local history of 24 branch difference signs.  
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Figure 4.18. The average prediction accuracies on all branches and, respectively, 

only on unbiased branches from the SPEC2000 benchmarks, using a 
PPM(tdim=unlimited, hlen=24, plen=varied, thres=1, htype=sign) branch 

difference predictor with different pattern lengths. 
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Figure 4.19. The average prediction accuracies on SPEC2000 benchmarks using a 

PPM(tdim=unlimited, hlen=varied, plen=varied, thres=1, htype=sign) branch 
difference predictor exploring different local history lengths and pattern lengths. 
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Figure 4.19 explores the space of local history lengths and pattern lengths 
using a threshold of 1 and confirms that an acceptable choice (taking into 
account a good accuracy/complexity trade-off report) is to use a history of 
24 branch difference signs with a pattern length of 3. 
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Figure 4.20. The average confidence on all branches and, respectively, only on 

unbiased branches from the SPEC2000 benchmarks, using a PPM(tdim=unlimited, 
hlen=24, plen=3, thres=varied, htype=sign) branch difference predictor with 

different threshold values. 

Threshold Lost predictions [%]
T=1 0.00
T=2 7.59
T=3 13.37
T=4 17.31
T=5 20.50
T=6 23.40
T=7 25.13
T=8 26.98

Table 4.4. Average percentages of predictions lost with different thresholds. 

We also studied the influence of the threshold’s value over the prediction 
accuracy, using an unlimited BDHT, a local history of 24 branch difference 
signs, and a pattern length of 3. The threshold’s value means how many 
times the current search pattern must be found in the history string in order 
to generate a prediction, implementing thus a confidence degree (otherwise, 
no prediction is generated). Strictly considering the confidence metric, the 
experimental results presented in Figure 4.20 show that the optimal 
threshold value is 7. However, in this case, the total number of predictions 
decreases at average with 25.13% (see Table 4.4). Considering T=1, the 
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global prediction accuracy on unbiased branches A(T=1) is 68.61%. In 
contrast, considering T=7, the global accuracy A(T=7) is 74.87%x78.33% = 
58.64% and, respectively, for T=2, A(T=2) is 92.41%x71.16% = 65.75%. 
Therefore, from the global accuracy point of view T=1 is optimal. The last 
parameter we varied is the dimension of the BDHT. 
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Figure 4.21. The average prediction accuracies on the SPEC2000 benchmarks 

using a PPM(tdim=varied, hlen=24, plen=3, thres=1 and 7, htype=sign) branch 
difference predictor considering different BDHT dimensions. 

Figure 4.21 shows that a BDHT with 256 entries provides the same results 
as an unlimited BDHT does. Consequently, we determined that the optimal 
branch difference predictor configuration is PPM(tdim=256, hlen=24, 
plen=3, thres=1 or 7, htype=sign). The signs of branch differences can be 
predicted considering this optimal configuration with an accuracy of 
68.60% on the unbiased branches and 88.66% on all branches and, 
respectively, a confidence of 78.33% on the unbiased branches and 96.05% 
on all branches. 

The next step consists in speculatively executing branches based on 
their predicted input differences. The final confidence branch prediction 
accuracies – evaluating all branches and, respectively, only unbiased 
branches –, obtained using the speculative branch differences generated with 
the optimal branch difference predictor, are presented in Tables 4.5 (without 
threshold) and 27 (with threshold). 

The average prediction accuracy obtained without threshold on the 
unbiased branches is only 71.76% (see Table 4.5). Using a threshold of 7, it 
grows to 79.69% (see Table 4.6). 
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 Branch Prediction Accuracy [%] 

Benchmark All Unb.
bzip 89.92 74.50
gzip 88.95 79.06
mcf 97.10 66.25
parser 91.47 66.01
twolf 85.29 73.00
Average 90.55 71.76

Table 4.5. The final branch prediction accuracies on all branches and, respectively, 
only on unbiased branches, obtained by using the speculative branch differences 

generated with the optimal branch-difference predictor without threshold. 

 Branch Prediction Accuracy [%] 

Benchmark All Unb.
bzip 96.88 79.94
gzip 95.99 86.28
mcf 99.19 75.14
parser 96.71 73.26
twolf 93.40 83.83
Average 96.43 79.69

Table 4.6. The final branch prediction accuracies on all branches and, respectively, 
only on unbiased branches, obtained by using the speculative branch differences 

generated with the optimal branch-difference predictor using a threshold of 7. 

The average prediction accuracy measured only on unbiased branches and, 
respectively, on all branches is lower for the complete-PPM predictor 
comparing with the perceptron predictor. Consequently, unbiased branches 
remain hard-to-predict even with the sign of the condition’s difference in the 
local approach, due to the quasi-random values afferent to the branch 
condition. Therefore, a hybrid global-local approach is necessary. 
 

4.6.4. Evaluating Combined Global and Local Branch 
Difference Predictors 
 
 In the combined global and local approach, each global history 
pattern points to its own BDHT (see Figure 4.8). The selected BDHT is 
indexed by the PC, as in the local approach. First, we evaluated the 
predictor by maintaining in the GHR (see Figure 4.8) the global branch 
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difference history: the signs of the inputs’ differences corresponding to the 
previous h branches. Figure 4.22 shows comparatively the results obtained 
with and without threshold on all branches and, respectively, only on the 
unbiased branches from the SPEC 2000 benchmarks.  
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Figure 4.22. The average confidence on the SPEC2000 benchmarks using a 

PPM(tdim=256, hlen=24, plen=3, thres=1 and 7, htype=sign) branch difference 
predictor considering different global branch difference history lengths. 

We also evaluated the predictor by maintaining in the GHR the 
global branch outcome history (Taken / Not Taken). Our simulation results 
show that the confidence is slightly better on unbiased branches if we use 
the global difference-sign history. Considering a global history length of 4 
(GH=4), we obtained a confidence of 68.81% with the global difference-
sign history, opposite to 67.84% obtained with global branch outcome 
history. The difference-sign history can be more efficient because, due to its 
additional information, it can efficiently exploit shorter contexts, too. The 
following example presents the situation for bgez: 
 
 

Difference history: 138, 52, 47, 0, -591, 5783, 4, 702, 0, -35, 721, 5, 14, 0, ? 
Sign history:  +, +, +, 0, -, +, +, +, 0, -, +, +, +, 0, ? 
Output history: T, T, T, T, NT, T, T, T, T, NT, T, T, T, T, ? 

 
 
If after “0” statistically follows “-“ (and, in the case of bgez, “0” is 
associated together with “+” to Taken) a first order Markov can correctly 
predict in the case of sign history, while, in the case of outcome history, the 
Markov predictor must be of order 4 or higher for correct prediction. 



Predicting Unbiased Branches 77 

The signs of branch differences can be predicted, considering a 
PPM(tdim=256, hlen=24, plen=3, thres=1, htype=sign) having a global 
branch difference history of 4, with an accuracy of 68.81% on the unbiased 
branches and, respectively 90.47% on all branches (see Figure 4.22). The 
next step consists in executing branches based on their predicted input 
differences. The final branch prediction accuracies – evaluating all branches 
and, respectively, only unbiased branches –, obtained by using the 
speculative branch differences generated with this global-local branch 
difference predictor, are presented in Table 4.7. The results show that even 
the global-local PPM cannot improve the branch prediction accuracy 
obtained with the perceptron predictor. 
 

 Branch Prediction Accuracy [%] 

Benchmark All Unb.
bzip 92.32 75.69
gzip 90.59 78.33
mcf 98.22 64.24
parser 93.90 69.14
twolf 86.62 70.28
Average 92.33 71.54

Table 4.7. The final branch prediction accuracies on all branches respectively only 
on unbiased branches, obtained using the speculative branch differences generated 

with the optimal global-local branch-difference predictor without threshold. 

 Branch Prediction Accuracy [%] 

Benchmark All Unb.
bzip 97.62 84.44
gzip 96.70 86.36
mcf 99.53 74.46
parser 98.07 78.56
twolf 95.26 82.41
Average 97.44 81.25

Table 4.8. The final branch prediction accuracies obtained by using the optimal 
global-local branch-difference predictor with a threshold of 7 (confidence). 

The final branch prediction accuracies – evaluating all branches and, 
respectively, only unbiased branches –, obtained by using the speculative 
branch differences generated using this global-local branch difference 
predictor with a threshold of 7, are presented in Table 4.8. As it can be 
observed, the global-local approach improves significantly the average 
prediction accuracy on all branches to 97.44%, if a threshold of 7 is used. 
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However, the average prediction accuracy remains still low on unbiased 
branches: 81.25%. 
 
 

4.6.5. Branch Difference Prediction by Combining Multiple 
Partial Matches 
 
 Branch differences are predicted by five Markov predictors of orders 
ranging between [1, 5]. The final prediction is provided through majority 
voting, as we already presented in paragraph 4.5.3. We started our 
evaluations using a BDHT of 256 entries, local branch difference history of 
24 values. Figure 4.23 presents the results obtained on the SPEC2000 
benchmarks considering simple voting respectively confidence-based 
voting. 
 It can be observed that through confidence-based voting the branch 
differences can be predicted with a slightly higher accuracy than through 
simple voting. 
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Figure 4.23. Branch difference prediction accuracies by combining multiple partial 

matches through simple voting and confidence-based voting. 

Table 4.9 presents the final branch prediction accuracies – evaluating all 
branches and, respectively, only unbiased branches – obtained using the 
speculative branch differences generated by combining multiple partial 
matches through confidence-based voting. 
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 Branch Prediction Accuracy [%] 

Benchmark All Unb.
bzip 91.52 75.54
gzip 90.28 79.50
mcf 97.32 66.75
parser 92.27 67.13
twolf 86.55 72.30
Average 91.59 72.24

Table 4.9. The final branch prediction accuracies on all branches and, respectively, 
only on unbiased branches, obtained using the speculative branch differences 

generated by combining multiple partial matches through confidence-based voting. 

Figure 4.24 shows again, that the unbiased branches identified in [Gel06, 
Oan06, Vin06] cannot be accurately predicted even with condition-history-
based Markov predictors. The highest average prediction accuracy on the 
unbiased branches, of 77.30%, was provided by the piecewise linear branch 
predictor. 
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Figure 4.24. The final branch prediction accuracies obtained without threshold 
using the perceptron-based predictors, the O-GEHL predictor, the local complete-
PPM, the global-local complete-PPM and respectively prediction by combining 

multiple partial matches through confidence-based voting, only on unbiased 
branches. 

We also studied the influence of the threshold’s value over the 
prediction accuracy by combining multiple partial matches through 
confidence-based voting, using a BDHT with 256 entries, and a local history 
of 24 branch difference signs. In this case, the confidence-based voting 
takes the majority, considering only Markov predictions found in the history 
string after the considered pattern at least T (threshold) times. 
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Figure 4.25. Branch difference prediction accuracies by combining multiple partial 

matches through confidence-based voting with different thresholds. 

 
Threshold Lost predictions [%]
T=1 2,25
T=2 5,20
T=3 6,62
T=4 8,06
T=5 9,40
T=6 10,78
T=7 13,02
T=8 2,25

Table 4.10. Average percentages of predictions lost by using different thresholds. 

The experimental results presented in Figure 4.25 and Table 4.10 show that 
the optimal threshold value is 2. Thus, the final branch prediction accuracy 
by combining multiple partial matches through confidence-based voting 
with a threshold of 2 is 73.05% on unbiased branches. 



5. Using Last Branch Difference as 
Prediction Information 

Further, we evaluated the percentage of unbiased context instances 
using the last known branch condition difference together with global 
histories of p bits (1≤p≤24). A branch condition difference consists in the 
difference of the operand values implied in the branch condition. More than 
two branch condition differences are not necessary [Smi98, Hei99b]. Table 
5.1 and Figure 5.1 compares the percentages of unbiased branches using the 
global history (GH), the global history concatenated with the path (GH + 
PATH), respectively the global history concatenated with the last branch 
difference (GH + LBD). 

 
Context p=1 p=4 p=8 p=12 p=16 p=20 p=24 
GH (p bits) 49.28 39.38 32.08 27.23 24.46 22.08 20.23 
GH (p bits) + PATH (p PCs) 42.19 36.39 29.71 25.51 23.13 20.74 19.01 
GH (p bits) + LBD 36.99 32.25 26.94 22.39 19.91 17.85 16.24 

Table 5.1. The gain introduced by the path respectively last branch difference 
(LBD) for different context lengths – SPEC2000 benchmarks [%]. 
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Figure 5.1. The gain introduced by the path respectively last branch difference 

(LBD) for different context lengths – SPEC2000 benchmarks. 
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The results, presented in Figure 5.1, show that the last branch 
condition is more efficient than the path information: it decreased the 
percentage of unbiased branches for all evaluated context lengths (1≤p≤24). 
Therefore we can use this new prediction information in some state-of-the-
art branch predictors in order to increase prediction accuracy [Gel07a, 
Gel07b].  
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Figure 5.2. The GAg predictor using the last branch difference (LBD). 

We first analyzed a GAg  scheme that uses the last branch difference (LBD) 
by XORing it with the GHR (as the Gshare XORed the PC with the GHR). 
The predictor is presented in Figure 5.2. Table 5.2 presents the prediction 
accuracies obtained with the modified GAg predictor on unbiased branches.  
 

Bench 
GHPC16 
(gshare) GHLBD16 

LBD4-
GHLBD12 

LBD8-
GHLBD8 

Shifted-
GHLBD16 

Shifted-
LBD4-
GHLBD12 

Shifted-
LBD8-
GHLBD8 

LBD4-
GH12 

Signed-
LBD4-
GHLBD12 

bzip 67.40 66.16 69.66 70.26 66.55 69.45 70.01 70.12 69.64 
gzip 71.89 68.86 73.62 75.54 69.25 73.55 74.46 74.30 73.47 
mcf 82.44 81.30 78.63 72.27 82.13 77.24 70.97 78.40 78.71 
parser 64.96 63.23 66.39 68.93 62.72 65.75 66.40 67.62 66.05 
twolf 57.78 56.15 58.12 60.20 56.29 57.54 59.52 58.93 58.14 
Mean 68.89 67.14 69.28 69.44 67.39 68.71 68.27 69.87 69.20 

Table 5.2. Prediction accuracies of the modified GAg predictor on unbiased 
branches. 

The following contexts have been used with the modified GAg predictor 
(Table 5.2): 
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• GHPC16: the 16 least significant bits of the branch PC (shifted to 
right by 3 bits) XORed with 16 bits of global history (gshare 
predictor); 

• GHLBD16: 16 least significant bits of last branch difference XORed 
with 16 bits of global branch history; 

• LBD4-GHLBD12: 4 least significant bits of last branch difference 
concatenated with the XOR between 12 least significant bits of last 
branch difference and 12 bits of global branch history; 

• LBD8-GHLBD8: 8 least significant bits of last branch difference 
concatenated with the XOR between 8 least significant bits of last 
branch difference and 8 bits of global branch history; 

• Shifted-GHLBD16: the 16 least significant bits of last branch 
difference (shifted to right by 3 bits) XORed with 16 bits of global 
history; 

• Shifted-LBD4-GHLBD12: 4 least significant bits of last branch 
difference (shifted to right by 3 bits) concatenated with the XOR 
between 12 least significant bits of last branch difference (shifted to 
right by 3 bits) and 12 bits of global branch history; 

• Shifted-LBD8-GHLBD8: 8 least significant bits of last branch 
difference (shifted to right by 3 bits) concatenated with the XOR 
between 8 least significant bits of last branch difference (shifted to 
right by 3 bits) and 8 bits of global branch history; 

• LBD4-GH12: 4 least significant bits of last branch difference 
concatenated with 12 bits of global branch history; 

• Signed-LBD4-GHLBD12: sign bit of last branch difference (0 if 
positive, 1 if negative) concatenated with 3 least significant bits of 
last branch difference, and respectively, with the XOR between 12 
least significant bits of last branch difference and 12 bits of global 
branch history. 

 

We have also analyzed a PAg  scheme that uses the local (per-address) LBD 
(last branch difference) by XORing it with the LHR (local history register). 
The Per-address Branch History Table (PBHT) maintains for each branch its 
own Local History (LH) and, respectively, its Last Branch Difference 
(LBD). The predictor is presented in Figure 5.3. Table 4 presents the 
prediction accuracies obtained with the modified PAg predictor on unbiased 
branches.  
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Figure 5.3. The PAg predictor using the local LBD. 

 

Bench 
LH16 
(PAg) LHLBD16 

LBD4-
LHLBD12

LBD8-
LHLBD8

Shifted-
LHLBD16 

Shifted-LBD4-
LHLBD12 

Shifted-
LBD8-
LHLBD8

LBD4-
LH12 

Signed-LBD4-
LHLBD12 

bzip 74.83 69.86 74.61 74.68 70.07 74.54 74.35 74.80 74.67 
gzip 78.37 75.77 79.30 79.62 77.53 78.36 78.48 79.30 79.31 
mcf 72.18 70.93 70.55 68.15 73.79 71.91 68.34 69.21 68.76 
parser 72.64 74.06 74.82 73.65 72.95 74.30 73.23 73.13 74.52 
twolf 68.84 65.75 68.83 69.43 64.60 69.66 70.06 68.16 68.77 
Mean 73.37 71.27 73.62 73.11 71.79 73.75 72.89 72.92 73.21 

Table 5.3. Prediction accuracies of the modified PAg predictor on unbiased 
branches. 

The second level (GPHT) is indexed, depending on the used context, as 
follows: 

 

• LH16: the second level is indexed by 16 bits of local branch history 
(PAg predictor); 

• LHLBD16: 16 least significant bits of last branch difference XORed 
with 16 bits of local branch history; 

• LBD4-LHLBD12: 4 least significant bits of last branch difference 
concatenated with the XOR between 12 least significant bits of last 
branch difference and 12 bits of local branch history; 
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• LBD8-LHLBD8: 8 least significant bits of last branch difference 
concatenated with the XOR between 8 least significant bits of last 
branch difference and 8 bits of local branch history; 

• Shifted-LHLBD16: 16 least significant bits of last branch difference 
(shifted to right by 3 bits) XORed with 16 bits of local history; 

• Shifted-LBD4-LHLBD12: 4 least significant bits of last branch 
difference (shifted to right by 3 bits) concatenated with the XOR 
between 12 least significant bits of last branch difference (shifted to 
right by 3 bits) and 12 bits of local branch history; 

• Shifted-LBD8-LHLBD8: 8 least significant bits of last branch 
difference (shifted to right by 3 bits) concatenated with the XOR 
between 8 least significant bits of last branch difference (shifted to 
right by 3 bits) and 8 bits of local branch history; 

• LBD4-LH12: 4 least significant bits of last branch difference 
concatenated with 12 bits of local branch history; 

• Signed-LBD4-LHLBD12: sign bit of last branch difference (0 if 
positive, 1 if negative) concatenated with 3 least significant bits of 
last branch difference, and respectively, with the XOR between 12 
least significant bits of last branch difference and 12 bits of local 
branch history. 

 
 

Figure 5.4 presents the scheme of the perceptron-based branch 
predictor that is using as additional prediction information the global last 
branch difference (LBD). The lower part of the branch address (PC) selects 
a perceptron in the table of perceptrons and, respectively a local history 
register in the local branch history table. Thus, local and global branch 
histories together with the last branch difference are used as inputs for the 
selected perceptron in order to generate a prediction. 

Table 5.4 presents the prediction accuracies obtained with the 
piecewise linear branch predictor on the unbiased branches, using the 
global LBD as additional prediction information. The global history length 
is dynamically adjusted between 18 and 48 bits and, respectively, the local 
history length between 1 and 16 bits, as in [Jim05, Gel07a, Gel07b]. We 
obtained an unsignificant gain when we used the last branch difference 
(LBD) entirely (32 bits), even with an increased number of weights from 
8590 upto 30713 (the higher weights number being justified by the long 
additional information). 
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Figure 5.4. Perceptron-based branch predictor using the last known global branch 
difference. 

Bench 
GH-LH- 
8590w 

GH-LH-LBD-
8590w 

GH-LH-LBD-
12530w 

GH-LH-LBD-
15720w 

GH-LH-LBD-
20573w 

GH-LH-LBD-
30713w 

bzip 76.63% 78.53% 78.58% 78.61% 78.61% 78.64% 
gzip 81.29% 81.51% 81.54% 81.54% 81.55% 81.57% 
mcf 74.74% 74.79% 74.78% 74.80% 74.79% 74.80% 
parser 77.11% 78.31% 78.58% 78.73% 78.84% 78.99% 
twolf 76.73% 76.56% 76.77% 77.20% 77.37% 77.52% 
Mean 77.30% 77.94% 78.05% 78.18% 78.23% 78.30% 

Table 5.4. The prediction accuracies obtained with piecewise linear branch 
predictor on unbiased branches, using the global LBD as additional prediction 

information. 

However, with the modified piecewise linear branch predictor we 
obtained a prediction accuracy of 78.30% (see Table 5.4) opposite to those 
obtained with the modified GAg, 69.87% (see Table 5.2), respectively the modified 
PAg, 73.75% (see Table 5.3). This gain was probably obtained because both the 
modified GAg and PAg predictors use a hashing between LBD and global 
respectively local branch history, while the modified piecewise linear branch 
predictor uses the branch history and LBD without hashing (by concatenating 
them). Figure 5.5 presents a possible scheme of the perceptron-based branch 
predictor that is using as prediction information local (per-address) last 
branch difference (LBD). 
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Figure 5.5. Perceptron-based branch predictor using the last known local branch 
difference. 

In Figure 5.5, the Local Branch History Table maintains for each 
branch its Local History (LH) and, respectively, the Last Branch Difference 
(LBD). The prediction accuracies obtained with this scheme are presented in 
Table 5.5. 
 

Bench 
GH-LH- 
8590w 

GH-LH-LBD-
8590w 

GH-LH-LBD-
12530w 

GH-LH-LBD-
15720w 

GH-LH-LBD-
20573w 

GH-LH-LBD-
30713w 

bzip 76.63% 76.64% 76.67% 76.71% 76.74% 76.77% 
gzip 81.29% 81.20% 81.22% 81.23% 81.22% 81.23% 
mcf 74.74% 75.00% 74.98% 75.02% 75.00% 75.02% 
parser 77.11% 78.00% 78.24% 78.42% 78.56% 78.71% 
twolf 76.73% 76.34% 76.53% 76.71% 76.97% 77.24% 
Average 77.30% 77.44% 77.53% 77.62% 77.70% 77.79% 

Table 5.5. Prediction accuracies of the piecewise linear branch predictor on 
unbiased branches, using the local (per-address) LBD as additional prediction 

information. 

Unfortunately, we have not obtained any improvement with the local LBD 
approach opposite to the global LBD approach, the accuracies being even 
lower. 



6. Designing an Advanced Simulator for 
Unbiased Branches Prediction 

In modern superscalar microarchitectures that speculatively execute 
a great quantity of code, without performing branch prediction, it won’t be 
possible to aggressively exploit program’s instruction level parallelism. 
Both the architectural and technological complexity of current processors 
emphasizes the negative impact on performance due to every branch 
misprediction. Due to this importance, branch prediction becomes a core 
topic in Computer Architecture curricula. The fast development of 
computer science and information technology domains, and of 
computer architecture especially, have determined that many software 
tools used not far ago in research, to be enhanced with an interactive 
graphical interface and to be taught in Introductory Computer 
Organization respectively Computer Architecture courses. The lack of 
simulators dedicated to branch prediction used in didactical purposes despite 
of plenty used in research goals, represents the starting point of this paper. 
The main aim of this section consists in identifying the difficult-to-predict 
branches, quantifying them at benchmark-level and finding the relevant 
information to reduce their numbers. Finally, we evaluate the impact of 
these branches on three commonly used prediction context (local, global and 
path) and their corresponding predictors ranging from classical two-level 
predictors to present-day predictors (neural – Simple Perceptron and Fast 
Path-based Perceptron). The developed ABPS (Advanced Branch 
Prediction Simulator) simulator provides a wide variety of configuration 
options. Beside statistics related to the number of difficult-to-predict 
branches, the simulator generates graphical results illustrating the influence 
of different simulation parameters (number of entries in prediction table, 
history length, etc.) on prediction accuracy, resources usage degree, etc., for 
every implemented predictor. 

Both the architectural complexity of current processors (deep 
pipeline structures – 20 at INTEL Pentium4 and wide width instruction 
issue) and technological complexity (higher processing frequency – greater 
than 3.3 GHz at same processor) emphasize the negative impact on 
performance due to every branch misprediction [Spr94]. Branch instructions 
activate at control-flow level generating performance loss by unknowing in 
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the instruction fetch stage the branch direction and target. Thus, the modern 
architectures should incorporate very efficacious prediction schemes. 
 

6.1. Simulation Methodology 
 

After more than two decades, the researcher from computer science 
domain got the conclusion that simulators have become an integral part of 
the computer architecture research and design process [Yi06]. Their most 
important advantages, comparing with real processors, are low 
implementation cost, development time, flexibility and extensibility 
allowing the architects to quickly evaluate the performance of a wide range 
of architectures and to quantify the efficacy of every enhancement. Besides 
its importance proved in computer architecture research field, in the latest 
time, simulators have been extensively employed as a valuable pedagogical 
tool as they enable students to visualize how microarchitecture components 
work and interact [Flo05]. For example, at last important Workshop on 
Computer Architecture Education held in conjunction with the 33rd 
International Symposium on Computer Architecture (ISCA06 – the best 
conference in computer architecture domain in the world), two papers aim at 
fundamental topics of computer architecture curricula: processor – cache 
interface in a RISC architecture (MIPS) [Pet06] and power and performance 
analysis in superscalar out-of-order architecture [Smu06]. 

In this section we present the implemented ABPS (Advanced Branch 
Prediction Simulator), an interactive graphical trace-driven simulator for 
teaching branch prediction [Rad07]. Projects designed around ABPS 
simulator are used in both undergraduate and graduate level courses at 
Computer Architecture at “Lucian Blaga” University of Sibiu to teach 
students concepts related to unbiased branch, state of the art branch 
predictors, branch prediction constraints and limits of instruction level 
parallelism. Our approach in teaching branch prediction represents a 
formative necessity since computer architecture is mainly approached in a 
descriptive manner. Through our approach students have the opportunities 
to be creative / innovative in computer architecture or in other fundamental 
research / didactical domains of computer science and information 
technology, even in countries not very developed from economical point of 
view. Based on highly parameterized developed simulation tools, students 
can understand more in depth the theoretical concepts related to branch 
prediction constraints, limits of instruction level parallelism. It could be 
observed the different benchmarks’ influence on every proposed 
architectural innovation.  
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Unfortunately, this version of the simulator uses only an analytical 
model to determine the impact of unbiased branch and branch 
missprediction on global processing performance [Vin07]. In his model, 
related to a superscalar processor, Vintan ignores stalls like cache misses 
and bus conflicts focalizing only about the penalty introduced by branch 
miss-prediction. In their assignments, students are asked to explore 
architecture configurations extending them for optimizing the power, 
performance, or both within a given chip area budget (based on other 
simulation tools – CACTI, WATTCH [Shi01, Bro00]).The simulator code is 
open source and can be found at [ABPS07]. 

The simulator allows trace-driven simulation on a collection of 17 
programs (having 1 million of dynamic branch instructions each) from 
different versions of SPEC benchmarks [SPEC]. We use all of the SPEC 
CPU2000 integer benchmarks, and all of the SPEC CPU95 integer 
benchmarks that are not duplicated in SPEC CPU2000. The benchmarks are 
compiled with the CompaQ GEM compiler with the optimization flags -fast 
-O4 -arch ev6 [Coh00]. All these benchmarks cover a lot of applications 
ranging from compression (text/image) to word processing, from compilers 
and architectures to games enhanced with artificial intelligence, etc.  

From a pedagogical point of view, the proposed tool benefits the 
learning process because it helps students to observe the influence of each 
parameter on simulation model. The simulator provides a wider variety of 
configuration options. Thus, it can be determined how the prediction 
accuracy does vary with input parameters (number of entries in prediction 
tables, history length, number of bits for weights representation, threshold 
value used for perceptron training, etc). The ABPS simulator assures three 
of the features specific to almost high-performance standard simulators: free 
availability for use, extensibility and portability. Full inheritance and 
polymorphism is used, allowing for ease of extension in the future adding 
new functionalities. 
 

6.2. The Functional Kernel of the Simulator 
 

The realized simulator must remove the bottlenecks that limit the 
processor performance and search for possible changes (architectural or 
optimization techniques) for improving it. Providing a highly parameterized 
model for every microarchitectural instance, the performance obtained by 
simulation will represent a quick feedback mechanism related to proposed 
changes. The simulator execution consists in the following sequential steps:  
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1) Configuring the microarchitecture with the input parameters 
including the benchmarks. 

2) Initialization phase (prediction tables, local/global history registers). 
3) Starting the trace processing and computing the simulation metrics. 

 
The mechanism that identifies unbiased branches was already 

presented in Chapter 3. The Detector kernel of ABPS finds the unbiased 
branches (those that have their polarization index – the percentage of “not 
taken” or “taken” branch instances corresponding to a certain context – 
lower than a polarization degree, set prior the simulation) and quantifies 
their number. Repeating the unbiased branches detection methodology for a 
length-ordered set of contexts it could be observed how the number of 
unbiased branches decreases. 

The prediction process supposes accessing the tables for every 
instruction from traces and establishing the prediction function of associated 
prediction automaton or perceptron. Every good prediction does increase the 
automatons state or perceptron weights, while every misprediction does 
decrease the same parameters. The automatons are implemented as 
saturating counters and, in the neural predictors’ case, the threshold keeps 
from overtraining, permitting the perceptron to adapt quickly at every 
changing behavior. 
 

6.3. The Software Design of the ABPS Simulator 
 

The user diagram (Figure 6.1a) illustrates the general user interaction 
process with ABPS. A generic user can mainly interact with ABPS in two 
ways (not fully distinct): 

• Default start – the user starts a simulation using the default input 
parameters. 

• Custom start (Choose simulation type) – the user chooses: 
 

1.The simulation type – detection or prediction; 
2.The benchmarks (Stanford and/or SPEC 2000); 
3.The values for the simulation parameters. 

 
Steps 1, 2, 3 can be executed in any order. Either of steps 1 and 3 is not 
mandatory. If one of them is not executed, default values are used. Step 2 
(choosing the benchmarks) is necessary the first time (initially no traces are 
selected for simulation) for both user interaction types. After the three steps 
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presented above, the user can start the simulation process. Both in the 
Default start and in the Custom start cases, after the simulation process is 
ready, simulation results are shown. At any time the simulation process can 
be aborted from the GUI (Graphic User Interface).  
 

 

Figure 6.1. UML Diagrams – User and Activity perspectives. 

The activity diagram (Figure 6.1b) shows a general view for the simulation 
process flowing in ABPS: 

• Initialization – all simulation parameters are set (traces, simulation 
type: detection / prediction, detector / predictor values); 
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• Starts simulation – the simulation begins after all the inputs had been 
set. The simulation process consists basically in processing each trace 
included (in a multithreaded manner); 

• Read trace – each trace is processed, branch after branch. Each branch 
instruction is fed to the selected detector / predictor. This is done until 
all branch instructions (from the selected trace) are processed. During 
this, results are accumulated. 

• Processing results – after a trace had been processed, the obtained 
results are processed in order to compute certain metrics; 

• Display results – the results are displayed and the simulation process 
stops. 

 

 
Figure 6.2. Sequence Diagram. 

The sequence diagram (Figure 6.2) presents in detail how ABPS performs 
the process of detecting unbiased branches. The process starts in the GUI, 
where the detection parameters are set. After this initialization, the user can 
trigger the detection process, which will be managed by another thread (1: 
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create, st:SimulatorThread). In this way, the GUI will not block itself, 
leaving the user with the ability to perform other tasks from ABPS. The 
simulation thread will create and start a detection thread (1.1: create, 
dt:DetectorThread). The detection thread will manage all the detection 
process (1.1.1: Create1, tr:TraceReader). When all the above initializations 
were performed, the detection process actually starts (2: startSimulation(), 
2.1: run()): the trace used for simulation is processed using the appropriate 
detector (see: 2.1.1 – 2.1.6). Finally, the detection thread signals (by 
returning the results) the simulation thread that the detection is done (2.2: 
Destruct3). In the same manner, the simulation thread signals the GUI 
thread (3:Destruct4), which will display the results. 

From the user’s point of view it is very necessary a visual friendly 
interface, based on menus, butons, dialog boxes, graphical images. The 
simulator must be easy to use and the results must be efficiently interpreted 
and processed (eventually transferred to some utility application such Excel, 
PowerPoint, Internet). The machine model should be “fine-tuned” to remove 
redundant or little hardware features and to investigate possible tradeoffs of 
performance against the functionality provided. 

To run the ABPS simulator, on the host computer the jre-1_5 (or 
higher) or jdk-1_5 (or higher) must first installed. ABPS is written in JAVA, 
thus is platform independent. For properly use of ABPS simulator it should 
be accomplished some system requirements. Thus, it is recommended to 
have a processor with at least 1 GHz frequency. Otherwise, due to JVM 
(java virtual machine), the simulation time, especially on SPEC2000 
benchmarks, risk to become prohibit. The RAM memory recommended is 
256Mbytes. Since we can represent on the same chart up to 17 benchmarks 
(even 6 bars on each), to have a good view it is required a 1024x768 
minimum screen resolution. 

The ABPS simulator is organized around a main window that 
contains two panels. The left one is used to configure (initialize all 
requested parameters) and control simulation. The right panel is based on 
two tabs – one that show every simulations’ results in text format, and 
another, that permits to generate graphical charts illustrating the influence of 
different simulation parameters on metrics like unbiased branches 
percentage, prediction accuracy, processing rate. The left panel is divided in 
two parts: the upper part contains the available testing programs. The 
Remove respectively Add buttons facilitate to remove the selected 
benchmark or to add new ones. The user can opt to choose between Stanford 
or SPEC benchmarks, single or multiple selections. Any simulation started 
will operate exclusively on selected benchmarks. Also, there are two very 
expressive buttons that allow selecting or deselecting all benchmarks. The 
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lower part of left panel contains two tabs Detector / Predictor, each having 
its own configuring parameters. The inputs for Detector are: the global 
history length – GH, the local history length – LH, a flag that show if path 
information correlation is used (concatenated), and the polarization degree 
of each context instance. The Predictor tab contains its own four tabs 
specific to each implemented predictor (GAg, PAg, PAp and Perceptron). 
The implemented two-level predictors request as inputs parameters: the 
number of entries in prediction table, the history length (global / local). 
Besides input parameters used by the two-level predictors, the neural 
predictors (Simple Perceptron and Fast Path-based Perceptron) need some 
additionals: threshold value used for learning algorithm, number of bits for 
storing the weights. Each predictor can predict all branches or only unbiased 
branches. If the second choice is made the simulator apply first the Detector 
phase, hidden for user. After determining the unbiased branches percentage 
the performance loss can be computed comparatively with an equivalent 
multiple instruction issue processor having an ideal branch predictor. 
 

 
Figure 6.3. ABPS simulator – unbiased branches detection. 

If the user chooses from Configuration panel the Detector tab and in the 
Results panel only simple execution (Simulate buton), among the simulation 
results a list of unbiased branches, in their certain contexts, does occure. 
This list could be saved (in text or csv format) for further analysis between 
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different unbiased branches lists obtained when the contexts length is 
extended. An important result is the unbiased branches percentage from the 
tested benchmarks. The students can see how this percentage does vary 
when the context length changes. Figure 6.3 shows the simulation results 
when the Detector tab was selected. 
 

 
Figure 6.4. ABPS simulator – variation of prediction accuracy with global history 

length. 

If the user selected from Configuration panel the Predictors / 
Perceptron tab (Simple or Fast Path-based) and in the Results panel only 
simple execution (not charts generating), the simulation results consist in 
four important metrics. The prediction accuracy is the number of correct 
predictions divided to total number of dynamic branches. We compute also 
a confidence metric that represents the total cases when the prediction was 
correct and the perceptron did not need to be trained (the magnitude of the 
perceptron output was greater than the threshold), divided to total number of 
correct predictions (therefore, considering a trivial threshold equal with 0). 
While the first two have impact on processor’s performance, the next two 
metrics have direct influence on transistors’ budget and integration area (the 
number of perceptrons used in the prediction process and respectively the 
saturation degree of the perceptrons). The saturation degree represents the 
percentage of cases when the weights of perceptrons cannot be increased / 
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decreased because they are saturated. If the last two metrics are quite low, it 
means that the perceptrons are underused. The prediction accuracy and the 
usage degree of prediction table are also computed in the case of two-level 
predictors. 

The Charts tab offers the possibility to illustrate graphical simulation 
results. From the two listboxes the user can select which metrics (from those 
explained earlier) to be used and which input parameter to be varied on all 
selected benchmarks. An interesting chart shows the Issue Rate (IR) relative 
speedup obtained by growing the context length. We used the formula 
[IR(L)–IR(16)]/IR(16), for computing IR relative speedup, where L is the 
context’s length, L∈{20, 24, 28, 32}). The last group of columns represents 
the average (or geometric / harmonic mean). The chart type may be Bar or 
Line. The chart can be saved in png format just by clicking on SaveChart 
button. Figure 6.4 illustrates how the prediction accuracy does vary with the 
global history length when the Fast Path-based Perceptron predictor is used 
on all Stanford benchmarks. 



7. Conclusions and Further Work 

Based on laborious simulations we showed that the percentages of 
difficult branches are quite significant (at average between 6% and 24%, 
depending on the different used contexts and their lengths). The simulations 
also show that the path is relevant for better polarization rate and prediction 
accuracy only in the case of short contexts. As Figures 3.5 and 3.6 suggest, 
our conclusion is that despite some branches are path-correlated, long 
history contexts (local and global) approximate well the path information. In 
other words, sufficient long history contexts might be viewed as a good 
“compression” of the most complete path information. In our further work, 
we’ll try to reduce the path information extracting and using only the most 
important bits. Thus, the path information could be built using only a part of 
the branch address instead of all the 32 bits of the complete PC. 

Therefore, it is obvious that for the unbiased branches identified in 
[Gel06, Vin06] the prediction information used by the present-day branch 
predictors (local/global correlations and path information), is not always 
sufficiently relevant and, therefore, these branches cannot be accurately 
predicted. Using the perceptron predictor we measured on these unbiased 
branches an average prediction accuracy of only 73.46% (and 92.58% on all 
branches). We also evaluated the Frankenpredictor [Loh05a], the O-GEHL 
[Sez05], and the Piecewise Linear Branch Predictor [Jim05] on unbiased 
branches, but the prediction accuracy was still low despite these predictors 
are using path-based information too. Using the Piecewise Linear Branch 
Predictor we obtained a prediction accuracy of 77.30% on the unbiased 
branches (94.92% on all branches) from the SPEC2000 benchmarks. 
Therefore, we introduced new prediction information, named branch 
difference history, representing the history of branch conditions’ signs. Our 
first goal was to exploit the correlation existing between the history of 
conditions’ signs (negative, zero or positive) encountered by a certain 
branch instruction and the next condition’s sign corresponding to that 
branch. If the condition sign is predictable, the branch’s behavior is 
predictable too because branch’s output is deterministically correlated with 
the condition’s sign.  

Thus, we implemented a local branch difference predictor using the 
Prediction by Partial Matching (PPM) algorithm. We determined through 
simulations that the optimal configuration of the predictor consists in a 
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Branch Difference History Table with 256 entries, a history length of 24 
values, and a pattern length of 3. We obtained with this scheme on the 
unbiased branches an average branch difference prediction accuracy of 
68.60% and a final branch prediction accuracy of 71.76% (90.55% on all 
branches). However, when we used a threshold of 7, we obtained a final 
branch prediction accuracy of 79.69% on unbiased branches (and 96.43% on 
all branches). Our combined global and local approach associates to each 
global difference history pattern its own BDHT. Evaluating this scheme on 
unbiased branches, we obtained a final branch prediction accuracy of 
71.54% (92.33% on all branches) without threshold, and, respectively, 
81.25% (97.44% on all branches) with a threshold of 7. Finally, with the 
branch difference prediction scheme that combines multiple partial matches, 
we obtained a final branch prediction accuracy of 72.24% on the unbiased 
branches (and 91.59% on all branches), without threshold. 

Further we show that the last branch condition is more efficient than 
the path information: it decreased the percentage of unbiased branches for 
all evaluated context lengths. Therefore we used this new prediction 
information in some state-of-the-art branch predictors. Unfortunately, the 
improvement obtained using the LBD entirely (32 bits), in terms of 
prediction accuracy, is not significant. 

Finally, we presented our ABPS simulator. Repeating the detection 
methodology for a length-ordered set of contexts it could be observed how 
the number of unbiased branches decreased, in the tested benchmarks. 
Another facility of ABPS consists in running a plenty of branch predictors, 
from classical two-level up to neural state-of-the art, having the possibility 
of varying the most important parameters and illustrating the graphical 
results of the simulations. Also important, our simulator permits the 
migration of some mature actual scientific problems to students’ 
understanding level. 
 In conclusion the average prediction accuracy remains still low on 
unbiased branches. During this work, we showed that difficult branches 
were efficiently identified in [Gel06, Vin06]. Furthermore, the accurate 
prediction of these unbiased branches constitutes an open problem, since 
each percent of unbiased branches decisively reduces prediction accuracy. 
As a consequence, these unbiased branches might define a fundamental 
limit in branch prediction research. 
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Further Work 
 
 We consider that the use of more prediction contexts (some HLL 
code information) is required to further improve prediction accuracies. In 
order to efficiently use such information we consider it will be necessary to 
have a significant amount of compiler support. Another alternative could be 
to pursue the concepts of micro-threading where small fragments of code 
are executed concurrently and the branch problem is no longer a major 
concern. Also, we want to explore the importance of unbiased branch 
prediction problem in Chip Multi-Processor (CMP) architectures. 

For further work we are concerned to the necessity of an efficient 
hardware branch predictor from power consumption and performance 
criterions, within a given chip area budget. Very high prediction accuracy is 
necessary, because taking into account the multiple-instruction-issue 
processors characteristics as pipeline depth or issue rates, even a prediction 
miss rate of a few percent involves a substantial performance loss. Also, we 
intend to extend the ABPS simulator with functional network 
characteristics, allowing a distributed simulation process in a client-server 
manner, useful due to the time consuming simulations. 
 Another objective is to develop a complex architecture that 
selectively anticipates the values produced by high-latency instructions. We 
will focalize on multiply, division and loads that access with miss the L2 
data cache. The DIV/MUL instructions (non-selective approach) will be 
solved by an Instruction Reuse scheme, without prediction. The critical load 
instructions (loads with miss in both cache levels – selective approach) will 
be solved by a reuse scheme or, if they are not reusable, through prediction 
(a simple prediction scheme will be used, e.g. last value predictor). We will 
evaluate this complex architecture and compare it with a blocked 
multithreading architecture. 
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Glossary 

Benchmark: is a program used for evaluations. In this work we used the 
SPEC2000 benchmark suite and the CBP-1 traces. 

Biased branch: mostly always taken or mostly always not taken branch 
(mostly-one-direction branch). The behavior (taken/not taken) of a 
biased branch is polarized. 

Biased branch context: the branch behavior (taken/not taken) is polarized 
for that certain context (local branch history, global history, etc.). 

Blocked multithreading: a multithreading architecture which switches 
threads at high latency instructions (e.g. critical loads). 

Branch difference: represents the value or the sign of the difference 
between the branch’s inputs. Regarding the sign of the inputs’ 
difference, a value of 1 indicates that the corresponding branch 
difference is positive, a value of -1 indicates a negative difference, while 
a 0 indicates equality between the branch’s inputs. 

Branch difference predictor: the branch outcomes are predicted based on 
branch difference histories. 

Branch polarization: measured through the polarization index (P). 
Branch prediction: is the prediction of the direction (taken/not taken) 

and/or the target address (next PC) of a branch instruction. 
Complete-PPM predictor: see Prediction by Partial Matching (PPM). 
Confidence automaton: saturated counter that indicates the confidence of a 

certain prediction. The prediction is generated only if the confidence 
automaton is in a predictable state. 

Context: the context of length p represents the last p elements from the 
correlation information used in order to make a prediction. In the case of 
person movement prediction the correlation information is the room 
history, and a context of length p consists in the last p visited rooms. In 
the case of branch prediction the correlation information is the branch 
history (e.g. local or global branch history), and a context of length p 
consists in the last p bits from the branch history. 

Context instance: is a dynamic branch executed in the respective context. 
Critical load: a load instruction with miss in both cache levels. 
Distribution (index): the distribution index of a certain branch context is 

computed as follows. 
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• nt = the number of branch outcome transitions, from taken to not 
taken and vice-versa, in context Si; 

• ),min(2 TNT⋅  = maximum number of possible transitions; 
• k = number of distinct contexts, pk 2≤ , where p is the length of the 

binary context; 
• if kiSD i ...,,2,1)(,1)( =∀= , then the behavior of the branch in 

context Si is “contradictory” (the most unfavorable case), and thus its 
learning is impossible; 

• if kiSD i ...,,2,1)(,0)( =∀= , then the behavior of the branch in 
context Si is constant (the most favorable case), and it can be 
learned. 

Dynamic branch: is an instance of a static branch during program 
execution. 

Dynamic branch prediction: the branches are predicted with hardware 
techniques. 

Dynamic learning: is the run-time prediction process when the outputs of 
the predictor are used to adjust the prediction structures and respectively 
to generate predictions. 

Feature (set): is the binary context on p bits of prediction information such 
as local history, global history or path. Each static branch finally has 
associated k dynamic contexts in which it can appear ( pk 2≤ ).  

Gain: is the factor which gives the improvement of the quality. 
Last branch difference (LBD): a branch condition difference consists in 

the difference of the operand values implied in the last branch condition. 
The global LBD is the last known branch condition difference. The local 
LBD is the last per-address branch condition difference. 

Markov chain: in the case of a first order Markov chain the probabilistic 
description is truncated to just the current and predecessor state. 

][...],,[ 121 itjtktitjt SqSqPSqSqSqP ====== −−− , where tq  is 
the state at time t. Thus, for a first order Markov chain with N states, the 
set of transition probabilities between states Si and Sj is }{ ijaA = , where 

][ 1 itjtij SqSqPa === − , Nji ≤≤ ,1 , having the properties 0≥ija  
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description is truncated to the current and R previous states. 
Markov predictor: the prediction is generated based on the state transition 

probabilities of a Markov chain. 
Polarization (index): the polarization index (P) of a certain branch context 

is computed as follows. 
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• { }kSSSS ...,,, 21=  = set of distinct contexts that appear during all 
branch instances; 

• k = number of distinct contexts, pk 2≤ , where p is the length of the 
binary context; 
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= 10 , ,  NT = number of “not taken” branch 

instances corresponding to context Si,  T = number of “taken” branch 
instances corresponding to context Si, ki ...,,2,1)( =∀ , and 
obviously 110 =+ ff ; 

• if kiSP i ...,,2,1)(,1)( =∀= , then the context iS  is completely 
biased (100%), and thus, the afferent branch is highly predictable; 

• if kiSP i ...,,2,1)(,5.0)( =∀= , then the context iS  is totally 
unbiased, and thus, the afferent branch is not predictable if the taken 
and not taken outcomes are shuffled. 

Prediction accuracy: the percentage or ratio of correct predictions reported 
to the total number of predictions. 

Prediction by Partial Matching (PPM): is a context-based prediction 
algorithm. The PPM predictor contains a set of simple Markov 
predictors. It is predicted the value that followed the context with the 
highest frequency. In the case of complete-PPM predictor, if a prediction 
cannot be generated with the Markov predictor of order k, then the 
pattern length is shortened and the Markov predictor of order k-1 tries to 
predict and so on. 

Speculative execution: instruction execution based on predicted values or 
predicted branch outcomes. 

Static branch: a certain branch instruction from a program. 
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Static branch prediction: the branches are predicted statically by the 
compiler. Static branch predictors are used in processors where the 
expectation is that branch behavior is highly predictable at compile-time. 

Static learning: means that before effective run-time prediction process, the 
predictor is trained based on some patterns. In the static learning process 
the outputs of the predictor are used only to adjust the prediction 
structures. 

Unbiased branch: a branch whose behavior (taken/not taken) is not 
sufficiently polarized. 

Unbiased branch context: the branch behavior (taken/not taken) is not 
sufficiently polarized for that certain context (local branch history, 
global history, etc.). 

 


