
STATIC AND DYNAMIC BRANCH PREDICTION USING NEURAL

NETWORKS

Marius SBERA*, Lucian N. VINTAN**, Adrian FLOREA**

* “S.C. Consultens Informationstechnik S.R.L.” Sibiu, ROMANIA, E-mail: sbmarius@usa.net

** “Lucian Blaga” University of Sibiu, Computer Science Department, Sibiu, ROMANIA
E-mail: vintan@jupiter.sibiu.ro, aflorea@vectra.sibiu.ro

Abstract: In this short paper we investigated a new static branch prediction technique. The main idea of this technique
is to use a large body of different programs (benchmarks) to identify and infer common C program behaviour. Then,
this knowledge is used to predict new “unseen” branches belonging to new programs. The common behaviour is
represented as a set of static features of branches that are mapped using a neural network to the probability that the
branch will be taken. In this way the predictor does not predict a program behaviour based on previous execution of the
same program or based on some program profiles but uses the knowledge gathered from other programs (knowledge
experience). Also we combined static and a dynamic neural branch predictor in order to investigate how much
influences the static predictor the dynamic one.

Key words: Architectures, Multiple Instruction Issue, Pipelining, Neural Branch Prediction, Neural Networks,
Modeling and Simulation, Performance Evaluations

1. Introduction

Branch prediction represents the process of correctly
predicting the branch’s direction and target address
before it is actually executed. High accuracy branch
prediction is increasingly important in today’s wide-
issue superscalar and/or deep pipeline processor
architecture. Wide-issue computer architectures rely on
predictable control flow and failure; to correctly predict
a branch involves delays in evacuating the instructions
from the wrong path of execution entered into the
pipeline structures [7,8]. Statistically was proven that
conditional branches are executed about every 7-8
instructions at average. Current wide-issue architectures
can execute four or more independent instructions per
cycle so a branch instruction is likely to be executed
every two cycles or less. This means that branch
prediction is crucial for processor performance. So in the
example of the Alpha 21164 processor, about 12
instructions may have to be flushed on a misprediction.
This translates to a severe performance penalty. Many
approaches have been proposed to branch prediction,
some of which mainly involve hardware (dynamic
branch prediction) while others involve software (static
branch prediction). Software methods usually cooperate
with hardware methods. For example, some architecture

have a “likely” bit into the instruction opcode that can be
set by the compiler if a branch is determined to be likely
taken. Recently there is a big interest in hybrid branch
prediction where it is exploited the synergism between
some different branch prediction schemes. Hence, a
combination of basic schemes might – at the same cost –
involve serious advantages. As an example, the recent
microprocessor Alpha 21264 uses a large hybrid
predictor [3]. This paper investigates neural static branch
prediction as proposed in [1] but it goes further and links
it with a dynamic neural branch prediction as stated in
[5,8].

2. Static Branch Prediction

Good static branch predictions are invaluable
information for compiler optimisation or performance
estimation. Typically there are two general approaches
for static branch prediction: profile-based predictions
and program-based predictions [8]. Profile-based
predictions use program profiles to determine the certain
path executed frequency. This can be extremely
successful in reducing the number of instructions
executed between mispredicted branches but additional
work is required on the part of the programmer to

generate the program profiles. Program-based branch
prediction methods attempt to rely only on a program’s
structure and to avoid programmer supplementary work.
Some of these techniques use heuristics based on local
knowledge that can be encoded in the architecture. Other
techniques rely on applying heuristics based on less
program structure in an effort to predict branch behavior.
The method described in this paper does not rely on such
heuristics. Rather than using heuristics it uses a large
body of different programs to identify and infer common
behavior. Then, this knowledge is used to predict some
new “unseen” programs. The common behavior is
represented in this work as static features of branches
that are mapped using a neural network to the probability
that the branch will be taken. In this way the predictor
does not predict a program behavior based on previous
execution of the same program but uses the knowledge
gathered from other programs.

3. Useful Information for Program-based
Branch Prediction

One of the first and most simple methods for branch
prediction is called “backward-taken/forward-not-taken”
(BTFNT). This technique relies on the statistical facts
that backward branches are usually loop branches, and as
such are likely to be taken. While simple, BTFNT is also
quite successful. Using this technique we obtained in our
experiments a static prediction accuracy rate of 57,83%.
Applying other simple program-based heuristics
information (branch opcode, operands, and
characteristics of the branch successor blocks,
knowledge about common programming idioms) can
significantly improve the branch prediction accuracy
over the simple BTFNT technique.

The work presented in this paper does not use any of
the heuristics stated above. Instead, a body of programs
is used to extract common branch behavior that can be
used to predict other branches. Every branch of those
programs is processed and some static information is
automatically extracted. The programs are then executed
and the corresponding dynamic behavior is associated
with each static element. Now we have accumulated a
body of knowledge about the relation between the static
program elements and it’s dynamic behavior. This body
of knowledge can then be used at a later time to predict
the behavior of instructions with similar static features
from programs not yet “seen” (i.e. processed). However
the prediction process is yet not complete. The static
prediction is not linked with real time execution unless
there is no connection with dynamic prediction (likely
bits). Of course, compilers or integrated schedulers may
still use static prediction alone in order to schedule the
static program [9]. So we further generate such bits and
use them as inputs into a dynamic predictor.

The only program elements that we are interested in
are the conditional branches. Other kinds of branches are
quite trivial from the direction prediction point of view.
However, there are some branches that remain very
interesting from the target prediction challenge. For each
conditional branch in the program a set of static useful
features are recorded (Table 1). Some of these features
are properties of the branch instruction itself (the branch
opcode, branch direction, etc.), others are properties of
the previous branch, while others are properties of the
basic blocks that follow on the two program paths after
the current branch. We mention that characteristics no. 5,
11 and 12 belonging to Table 1, are new useful
characteristics proposed by the authors of this work,
completely different by those stated in [1]. Of course,
finding new relevant prediction features might be a very
important open problem in our opinion.

Table 1. The Static Features Set
Index Feature Name Feature Description
1 Branch opcode The opcode of the branch instruction
2 Branch direction The branch direction (forward or backward)
3 Loop header The basic block is a loop header
4 RB type RB is a register or an immediate constant
5 RB register index or constant The RB register index or the LSB bits from the immediate constant
Features of the taken successor of the branch
6 Succ. Type The branch type from the successor basic block
7 Succ. Loopheader The successor basic block is a loop header
8 Succ. Backedge The edge getting to the successor is a back edge
9 Succ. Exitedge The edge getting to the successor is a loop exit edge
10 Suc. Call The successor basic block contains a procedure call
11 Succ. Store The successor basic block contains at least one store instruction
12 Succ. Load The successor basic block contains at least one load instruction
Features of the not taken successor of the branch
13-19 As features 6 to 12

4. The Statically Neural Predictor

Our goal into this work is to predict the branch
probability for a particular branch from its associated
static features. The prediction rate obtained is then used

as input into a dynamic branch predictor besides other
inputs. Also the static prediction will be used as an
important information in the static scheduler (as an
example, for the well-known trace scheduling
optimization technique).

The static features of a branch are mapped to a
probability that the branch will be taken. A simple way
to do this is using a feed-forward neural network. The
neural network uses as input a numerical vector and
maps it to a probability. Here, the numerical input vector
is binary coded and consists of the feature values
belonging to the static set (Table 1) and the output is a
scalar indicating the branch’s probability.

Similarly, the same type of feed-forward neural
network, but another input vector, is used to predict into

the dynamic predictor. This time the input vector
consists of binary representation of the branch address
concatenated with the transformed prediction obtained
from the static predictor (the static prediction obtained
may be a binary value taken/not taken or a “percentage
value”), and, possible other useful dynamic information
[6]. The output is represented by one bit value (‘1’ for
taken and ‘0’ for not taken).

Figure 1. A general picture of the two neural predictors working together

Before this ensemble of predictors (static and
dynamic) starting to will work we have to record a body
of knowledge into the static predictor’s neural network.
So, a set of programs (benchmarks) is used to train the
static neural network. The static features – automatically
extracted - for every conditional branch belonging to
these programs are mapped using the neural network to
the probability that the branch will be taken. The output
probability itself is obtained after running those
programs and recording statistical information about
each branch’s dynamical behavior. The process is
reiterated until the difference between the output of the
network and the statistical information gathered drops
under a certain value. After the process ends we may say
that we have recorded into the neural network weights a
body of knowledge about mapping static features of
branches to the probability that the branch will be taken.
The static predictor may now be used to predict branches
belonging to new unprocessed programs and the
outcome is used to influence the dynamic predictor
(there are several levels of influence, see further). The
outcome of the static predictor is transformed according
to the following rule: scalars greater than 0.5 are mapped
to ‘1’ and less than 0.5 to ‘0’. This partial result is then
concatenated with the branch’s address and set as input
into the dynamic predictor. To evaluate the influence of
this “likely bit” upon the dynamic prediction it is applied
in various levels (multiplied horizontally as number of
occurrence, obtaining more that one “likely bit”, all
identical) as stated by the “Static Influence” parameter in
our developed software dedicated program. The neural
networks used in this work in order to map static features
to a branch taken probability and to dynamically predict
a branch outcome, were feed-forward kinds of networks.
An artificial neural network is composed from
processing units or neurons. Each processing unit

outputs a value known as its activity. Connections or
weights links processing units are indicating the
direction of activity flow. The connection pattern that
links the units separates one type of neural network from
another. Basically there are two types of neural nets:
feed-forward nets (which have no loops) and recurrent
nets (in which loops occurs because of feedback
connections). Both neural networks used during this
work falls into the first category, being thus feed-
forward nets. In this kind of networks the activity flows
from input to output. The activities of the hidden layer,
denoted hi, and respectively of the output layer yk, are
computed based on the very well-known formulas, as
[2]:

∑ +⋅=
i

jiijj axwfh)(eqn (1)

and

∑ +⋅=
j

kjjkk bhvfy)(, eqn (2)

The activation function used into this work is a fairly
sigmoid standard one:

ue
f −+

=
1

1
eqn (3)

The adaptive behavior of the neural network is
achieved by setting its parameters, the weights wij and vjk
and biases aj and bk. The well-known back propagation
algorithm based on the square root error (E) computation
sets these parameters:

∑ −=
k

kk tyE 2)(eqn (4)

5. Experimental Methodology and Obtained
Results

To quantify the performance of this static prediction
scheme, during our experiments, we have used a set of 8
programs called globally the Stanford HSA (Hatfield
Superscalar Architecture) benchmarks suite. The
benchmark’s HSA assembler sources were used for the
static analyze and static feature extraction while the
statistics of the dynamic execution were extracted from
the traces of the same benchmarks. These traces were
obtained by running the Stanford benchmarks into an
instruction-level simulator special dedicated to the HSA
processor. The HSA is a high-performance multiple-
instruction-issue architecture developed to exploit
instruction-level parallelism through static instruction
scheduling [6,7].

To collect a body of knowledge only 7 (of the total of
8) programs are used. From the sources of these 7
programs the static feature sets are automatically
extracted and a statistical evaluation is performed on the
corresponding traces. Then, the neural net belonging to
the static predictor is used to map these static feature sets
to the probability that the branch will be taken or not
taken. This probability is extracted from the statistical
information earlier gathered. Now taking into account
that the body of needed knowledge is available, we may
proceed in predicting programs yet “unseen” by our
neural static predictor. In order to do this, we used the
eighth program from the HSA benchmarks suite, left out
until now, which we further call it the test benchmark.
Because every program from this suite covers just a
particular domain (puzzle games, recursion programs,
matrix problems, etc.), each experiment is executed 8-th
times and every time is left out another program (as a
test program). Finally an average of the eight results is
computed. The neural net’s configuration presented in
the results charts are represented as: [number of input
units] x [number of hidden units] x [number of output
units]. We have performed two distinct kinds of
experiments. In the first one we predicted using just the
first (static) neural network. The static prediction
extracted from this first neural network output is
compared with the perfect static prediction. By “perfect
static prediction” we actually mean the asymptotic limit
to which we could target out the maximum static
prediction accuracy, considering an ideal “Oracle”
processing model. In order to achieve this we considered
the dynamic trace from which we extracted statistical

information and for each benchmark we calculated its
associated perfect static prediction (P.S.P.) using our
following formula:

∑

∑

=

== L

k
k

L

k k

k

NBR

NBR
MBR

PSP

1

1

2

... eqn (5),

where:

NBRk – total number of dynamic instances of a branch
belonging to a certain benchmark
NBRk = NTk (no. of taken instances for the k branch) +
NNTk (no. of not taken instances for the k branch)
MBRk = Max(NTk, NNTk)
L = total number of static branches belonging to a certain
benchmark

Now we will define the (imperfect) static prediction
(S.P.) as the following formula:

∑

∑

=

=
−+

= L

k
k

k
k

k
L

k
k

k

k

NBR

R
NBR
NNT

R
NBR
NT

PS

1

2

1

2

))1(**(
.. eqn (6),

where:

Rk – the output of the static neural network predictor for
the branch k (1 – taken; 0-not taken). It’s mathematical
obviously that: P.S.P. ≥ S.P. eqn (7)

Prediction results obtained from the hybrid predictor
(static + dynamic) are computed using the same formulas
but while in formula (5) the input indices (MBRk) are
“coming” from trace statistics, in this case these indices
are gathered from the output of the first static neural
network (Rk). Also, the branch’s PC constitutes an input
parameter for the neural dynamic branch predictor.

For the first type of experiments we have considered
two ways of representing the output: as binary output (1
= taken, 0 = not taken) and as percentages of branch
taken behavior (measured probability). Figure 2 and 3
presents the static prediction accuracies (P.S.P. and S.P.)
according to these previous described two distinct
conditions.

45

55

65

75

85

95

Bubble Matrix Perm Puzzle Queens Sort Tower Tree Avg.

29x31x1

29x33x1

29x35x1

P.S.P.

Figure 2. Static prediction results with binary output

10

30

50

70

90

Bubble Matrix Perm Puzzle Queens Sort Tow er Tree Avg.

29x31x1

29x33x1

29x35x1

P.S.P.

Figure 3. Static prediction results with percentage output

The second type of experiments consists in
measuring the Static Influence (SI) of the static neural
predictor regarded to the dynamic neural predictor’s
behavior. More precisely, we added supplementary
outputs belonging to the static network as entries for the
dynamic neural predictor. The number of these
supplementary inputs – having each of them the same
associated value (probability) - is noted here with SI.
The influence of SI parameter is presented in Figure 4
(SI=2 and 4). Related to Figure 4, it means that the
dynamic predictor’s totally number of input cells is

(8+SI) respectively (10+SI). A bigger number of inputs
units derived from the static predictor means,
theoretically, a bigger influence related to the neural
dynamic predictor’s accuracy. The neural network
configurations are represented as:
q the configuration for the static net as: [number of

input units] x [number of hidden units] x [number of
output units]

q the configuration for the dynamic net as: [number of
input units] x [number of hidden units] x [1 output
unit]

70

75

80

85

29x31x1
8x10x1

29x33x1
8x10x1

29x35x1
8x10x1

29x31x1
10x12x1

29x33x1
10x12x1

29x35x1
10x12x1

SI = 2

SI = 4

Figure 4. Hybrid (static + dynamic) prediction results influenced by a binary static prediction resolution

6. Conclusions and Further Work

The method investigated through this paper has the
advantages over the existing static prediction methods
that rather than being based on heuristics it is based on
general program structures and behaviour (experience).
Another advantage is that no supplementary time or

programmer intervention is required to generate profiling
information.

Our simulations focused on the neural static
prediction (figures 2 and 3) suggests that predicting
binary results (taken / not taken) is less efficient than
generating percentage results (prediction accuracies).
The best average result performed for the binary output
static prediction was at average 66,21% while with

percentage output it reached 68.32%. Both these static
prediction results must be compared with the perfect
static prediction that was about 82.16%. The neural net’s
percentage outputs, even if are harder to be assimilated
in the learning phase, contains more information than a
simple binary prediction. Also based on our simulations
the influence (through simulated likely bits) of static
predictor upon a neural dynamic predictor is minimal.
The best results obtained were 80.34% for a SI=2 and
respectively 81.1% for SI=4, both using the same hybrid
configuration (29x33x1, 8x10x1). Figure 4 exposes that
as static influence grows for smaller neural nets
configurations the result is also positively influenced, but
on bigger neural nets the static influence becomes
negative by expanding too much the input layer of the
net and being harder to assimilate by the neural net.

As an immediately further work we are intending to
develop also other neural nets topologies, including
recurrent neural nets (NN). These NN contain
connections from the hidden cells to the context cells in
order to store the state of the net on the previous step of
time. Some recent research prove that some recurrent
nets with asymmetric connections or partially recurrent
nets, perform sequence recognition far better than other
(simple recurrent) NN. Also we intend to use the
SPEC’2000 benchmarks that is known that are more
predictable than our used benchmarks.

Acknowledgments

This work was partially supported by two research grants
(CNCSIS 8/2001 and ANSTI CG 12/05.06.2001) offered
by Romanian Ministry of Education and Research
(M.E.C.). Our gratitude to Professor Gordon B. Steven
and Dr. Colin Egan from the University of Hertfordshire,
England, for providing HSA Stanford benchmarks and
for their useful helps. Also we like to thank Professor
Theo Ungerer from Karlsruhe University, Germany, for
a very useful professional discussion in January 2001.

References

[1] Calder, B., Grunwald, D., and Lindsay, D. - Corpus-
based Static Branch Prediction, SIGPLAN Notices, June
1995, pp79-92

[2] S.I. Gallant - Neural Networks and Expert Systems,
MIT Press. 1993.

[3] D. Grunwald, D. Lindsay, B. Zorn – Static Methods
in Hybrid Branch Prediction, Proceedings of the
International Conference on Parallel Architectures and
Compilation Techniques (PACT), 1998

[4] M. Sbera – MSc thesis: Some Contributions to Static
and Dynamic Branch Prediction Challenge, University
“L. Blaga”, Sibiu, Romania, July 2001

[5] M. Sbera – BSc thesis: A Quantitative Estimation
upon Dynamic Neural Branch Prediction, University “L.
Blaga”, Sibiu, Romania, June 2000

[6] G. Steven, C. Egan, L. Vintan – Dynamic Branch
Prediction using Neural Networks, Proceedings of
International Euromicro Conference DSD '2001,
Warsaw, Poland, September, 2001

[7] G. B. Steven, B. Christianson, R. Collins, R. Potter,
and F. Steven – A Superscalar Architecture to Exploit
Instruction Level Parallelism, Microprocessors and
Microsystems, Vol.20, No 7, March 1997, pp.391-400.

[8] L. N. Vintan – Instruction Level Parallel Processors,
Romanian Academy Publishing House, Bucharest, 2000
(264 pp., in Romanian)

[9] W. Wong – Source Level Static Branch Prediction,
The Computer Journal, vol, 42, No,2, 1999

