

Register Value Prediction using Metapredictors

Lucian N. Vintan, Arpad Gellert and Adrian Florea

“Lucian Blaga” University of Sibiu, Computer Science Department, Str. E. Cioran, No. 4, Sibiu-550025, ROMANIA,
Tel./Fax: +40-269-212716, E-mail lucian.vintan@ulbsibiu.ro, arpad.gellert@ulbsibiu.ro, adrian.florea@ulbsibiu.ro

Abstract? Value Prediction (VP) is a relatively new

technique that increases performance by eliminating true data
dependencies constraints. Value prediction architectures
allow data dependent instructions to issue and execute
speculatively using the predicted values. This technique is
built on the concept of value locality, which describes the
likelihood of a previously seen value’s recurrence within a
storage location.

This paper extends the dynamic value prediction by
exploiting the concept of register centric prediction instead of
instruction centric prediction. The value localities obtained on
some registers of MIPS architecture were quite remarkable
leading to conclusion that value prediction might be
successfully applied, at least on these favorable registers. The
idea of attaching a value predictor for the processor’s
favorable registers might involve new architectural
techniques for improving performance and reducing the
hardware cost of speculative microarchitectures. The register
value prediction technique consists in predicting registers’
next values based on the previously seen values. It executes
the subsequent data dependent instructions using the
predicted values and the speculative execution will be
validated when the correct values are known. If the value was
correctly predicted the critical path is reduced, otherwise the
instructions executed with wrong entries must be executed
again.

In our previous work we implemented a hybrid predictor
composed by a context-based predictor and respectively a
stride predictor, working together. The context-based
predictor had always priority; in this way the value generated
by the stride predictor was used only if the context-based
predictor cannot generate a prediction. Obviously this fixed
prioritisation is not optimal. In this paper our goal is to
increase the prediction accuracy using a dynamic
prioritisation based on some confidences. We introduce
several different metaprediction structures, in order to
properly select the current best predictor: two non-adaptive
metapredictors and an adaptive one, represented by a neural
network. The experimental results obtained using
metaprediction applied only to the best four favorable
registers (having high value locality degrees) show an average
prediction accuracy of 91.40%, measured on SPEC
benchmarks. The accuracy gain obtained on these registers
versus the old hybrid predictor is 2.27%.

Index Terms? metapredictors, dynamic value predictors,
register value prediction, neural networks.

I. INTRODUCTION

Our proposed register value prediction (RVP) focuses
dynamic value prediction to CPU’s context. It allows
dependent instructions speculative execution by predicting
the values of their corresponding destination registers. The
RVP technique predicts the values of registers based on the
last values stored in those registers; it executes the
operations using the predicted values and the speculative
execution will be validated when the correct values are
known, after the complete instruction’s execution. If the
value was correctly predicted the critical path might be
reduced, otherwise the instructions executed with wrong
entries must be executed again (recovery).

Whether until now the prediction process was
instruction (producer) or memory centered with great
complexity and timing costs, by implementing the well-
known value prediction schemes [8], [12] centered on
CPU’s registers will mainly decrease the hardware cost.
However, there are some disadvantages. Addressing the
prediction tables with instructions’ destination register
name (during the decode stage) instead of Program Counter
will cause some interferences and delays. However, we
proved that with a sufficiently large history a hybrid
predictor could eliminate this problem and achieve very
high prediction accuracy. The main benefit of the proposed
VP technique consists in unlocking the subsequent
dependent instructions.

In our previous works we developed and simulated
several different basic value predictors, such as the last
value predictor, the stride value predictor, the context-
based predictor and a hybrid value predictor. The last
value predictors predict the new value as the same with the
last value stored in the corresponding register. The stride
value predictors identify stride sequences and predict them
correspondingly. The context-based predictors predict the
next value based on a particular stored pattern that was
repetitively generated in the value sequence. An important
class of contextual based predictors implement the
“Prediction by Partial Matching” algorithm (PPM), based
on a set of Markov predictors. We also implemented a
hybrid predictor composed by a context-based predictor
and respectively a stride predictor, working together. The
context-based predictor had always priority; in this way the
value generated by the stride predictor was used only if the

context-based predictor cannot generate a prediction.
Obviously this fixed prioritization is not optimal; this will
be solved in this paper through our proposed
metapredictors.

Our goal is to improve the presented hybrid predictors,
in order to obtain better prediction accuracy. We introduce
several different metapredictors, used for a dynamic
selection of the current best predictor: two non-adaptive
(static) metapredictors and an adaptive (dynamic) neural
metapredictor.

The organization of the rest of this paper is as follows.
In section II we review related work in the field of value
prediction. Section III presents the metaprediction concept
and describes the implemented predictors. Section IV
includes simulation methodology and experimental results
obtained using a simulator that we developed. Finally,
section V suggests directions for future works and
concludes the paper.

II. RELATED WORK

Lipasti and Shen [8] first introduced the concept of
value locality as the third facet of the principle of locality
(temporal and spatial). They defined the value locality as
"the likelihood of the recurrence of a previously-seen value
within a storage location" [8] in a processor. When the
"storage location" is a single condition bit into a processor,
it serves as the basis of branch prediction techniques.
Statistical results based on laborious simulations have
proved that common-used programs are characterized by
strong value repetitions. Value prediction techniques
exploit value locality to collapse true data dependencies
exceeding the dataflow limit.

Based on the dynamic correlation between load
instruction addresses and the values being loaded, Lipasti
[7] proposed a new data-speculative micro-architectural
technique entitled load value prediction that can effectively
exploit value locality to collapse true data dependencies
exceeding the dataflow limit and enhancing the instruction
level parallelism, reduce average memory latency and
bandwidth requirement and provide measurable
performance gains.

Relatively recent studies [5] introduced the Store
locality concept and Store prediction methods, with good
results especially for multiprocessor systems. It is
introduced the “silent Store” concept, meaning that a Store
writes the same value like its previous instance (34% - 68%
of the dynamic Store instructions are silent Stores). So,
removing these Store instructions at some points in the
program’s execution (either statically at compile time, or
dynamically at run time) some potential benefit can be
gained in execution time and/or code size [5]. Also, there
are reduced: the pressure on cache write ports, the pressure
on store queues and the data bus traffic outside the
processor chip. The free silent store squashing concept is
based on idle read port stealing to perform store verifies
and aggressive load/store queue to exploit temporal and
spatial locality for store squashing [6].

In [12] Sazeides developed an empirical classification
of value sequences produced by instructions. There are two
kinds of value predictability existing in programs: value
repetition and value computability. In order to capture
these certain types of value predictability, the authors have
been proposed two distinct main categories of predictors:
computational and contextual. Two important
characteristics were also defined for understanding
prediction behavior. One is the Learning Time (LT), which
is the number of values that have to be observed before the
first correct prediction. The second is the Learning Degree
(LD), which is the percentage of correct predictions
following the first correct prediction.

Computational predictors are predicting based on some
previous values in an algorithmic manner, therefore
according to a deterministic recurrence formula. An
incremental predictor belongs to the computational class.
Lipasti and Shen introduced the stride predictor in [7] and
Sazeides [12] generalized the idea. A stride sequence is a
value sequence in which the later value can be computed
by the immediate previous value and a stride. Last value
predictors were used for the first time in [8] to predict load
values. In some subsequent work the value prediction
process was extended to other types of instruction (add,
shift, store) [7], [2]. The simulation results indicated that
the performance of computational prediction varies
between instructions types indicating that its performance
can be further improved if the prediction function matches
the functionality of the predicted instruction.

The contextual predictor predicts the next value based
on a particular stored pattern (context) that is repetitively
generated in the value sequence. Theoretically they can
predict any repetitive sequences. A context predictor is of
order k if its context information includes the last k values,
and, therefore, the search is done using this pattern of k
values length. In fact, in this case the prediction process is
based on a simple Markov model [10]. The results of
laborious simulation on SPEC benchmarks pointed out that
a single predictor cannot capture all the various types of
predictability patterns that occur in programs. This suggests
that a hybrid scheme might be useful for enabling high
prediction accuracy at lower cost [8], [17]. Although the
hybrid value predictors can provide more correct
predictions than single predictors, they consume more
hardware resources. More importantly, they can waste the
limited hardware resources available since every
instruction being predicted occupies a unique entry in each
of the component predictors.

Rychlik [11] combined a last, a stride, and a two-level
value predictor to an overall hybrid value predictor. In
order to efficiently utilize the hardware resources, they
provided the dynamic classification scheme to dynamically
distribute instructions into proper component predictors
during run-time [11]. Although this dynamic classification
scheme uses the hardware resources more efficiently, it
cannot provide higher prediction accuracy than the hybrid
value predictor. Lee and Yew [18] modified the dynamic
classification scheme by reclassifying instructions after
they cannot be predicted well by their previously assigned

component predictor. Their modification improved this
kind of hybrid value predictor.

Calder [1] proposed some techniques that give priority
for prediction to those instructions that belong to the
longest data dependence chains in order to reduce the
pressure on the limited value prediction resources (such as
the limited table size and limited read/write ports). For this
reason, it is constructed partial data dependence graphs for
instructions in the processor’s active instruction window
during run -time. Also, for detecting the time consuming
instructions it is required the compiler’s help together with
some profiling information.

Tullsen and Seng [15] proposed a technique entitled
register-value prediction that identifies instructions that
produce values that are already in the register file.
Therefore, the corresponding results are predicted using the
values belonging to the register file. Mainly, this technique
uses the previous value in the instruction’s destination
register as a prediction for the new r esult, in a statically or
dynamically manner. In contrast to our work, this approach
is instruction -centric, like all developed papers in this
research area, instead of register -centric, as our approach
is. According to this, the authors pointed out that i n their
prediction approach “confidence counters are associated
with instructions rather than registers”. As an alternative,
our original register value prediction technique consists in
predicting register’s next value based on the previously
seen values. In order to implement this strategy we attach a
value predictor for all the CPU’s favorable registers
(having a high value locality degree). After instruction’s
decode, in order to predict instruction’s destination the
corresponding register value predictor is activated. Based
on this approach, we developed in a systematical manner
some context predictors

Gabbay and Mendelson [3] developed a so called
register-file predictor that is the closest predecessor to our
register value prediction technique. They pr edict the
destination value of a given instruction according to the last
previously seen value and the stride of its destination
register. Unfortunately the authors did not pursue further
this particular idea by systematically developing new
register-centric predictors and evaluating them through
simulations.

III. META PREDICTION

A hybrid instruction value predictor combines two or
more component predictors that each predicts the value of
the current instruction destination. The hybrid predictor
therefore needs a selection mechanism to predict which of
the predictors is likely to be most accurate at a certain
moment. This prediction of prediction accuracy is called in
literature metaprediction.

In this paper we used the following component
predictors, all of them centered on CPU’s registers instead
on program’s instructions: a last value predictor, a stride
predictor and a context-based predictor. Every component
predictor provides two values: the predicted value and its
confidence. A confidence mechanism performs speculation
control by limiting the prediction to those that are likely to
be correct. A high confidence represents the continuous
correct predictability in a given history of that register.

The metapredictor represents a second prediction level
and it selects dynamically, based on their last behaviors
(confidence), one of the predictors (last value, stride or
contextual) in order to predict the next value for a certain
destination register. The architecture used for
metaprediction is presented in Fig. 2.

 Last Value
 Predictor

 Stride
 Predictor

 Contextual
 Predictor

 Val1 Val2 Valk

 METAPREDICTION
? neural
?

with automata
? heuristic

Predicted Value
(winner)

MUX

PREDICTED VALUES

 Confidence

 Confidence

 Confidence

Predictor Selection

Last k values of Rdest

Rule:
Use the predictor with
highest confidence value

Fig. 2. The architecture used for metaprediction

A. Heuristic Non-Adaptive Metapredictors

The first non-adaptive metapredictor (we called it
“heuristic”) selects one of the predictors based on their last
k behaviors (correct/incorrect prediction). A logical one
(‘1’) means a correct prediction and a logical zero (‘0’)
means a miss -prediction. These behaviors are stored in a
logic left shift register associated with each predictor (Fig.
3).

V1 V2 V3 … .. Vk

1 2 3 ...… k

Sequence of the last
k behaviors (0/1):

History index:

Fig. 3. Logic left shift register associated with each
predictor

The predictor with the highest number of favorable
behaviors (number of logical ones) has priority. The
predicted value is used only if the selected predictor
encountered a number of favorable behaviors higher than a
certain threshold. In other words a prediction is generated
only in the case of an acceptable confidence.

B. Non-Adaptive Metapredictors With Automata

The other one non-adaptive metapredictor uses three 4-
states confidence automata – saturating counters: one for
the context-based predictor, one for the stride predictor and
another one for the last value predictor. The automata
initially are in the unpredictable state and they are adjusted
after each prediction, when the real values are known. The
predictor with the highest confidence has priority and a
prediction is generated only in the corresponding two
predictable states. The structure of the 4-states automata is
presented in Fig. 4.

Fig. 4. The structure of the 4-state automata

C. Neural Adaptive Metapredictors

Another idea consists in implementing a dynamic
metapredictor represented by a simple neural network (NN)
in order to select the best predictor at a certain moment. It
is well known that a great advantage of the artificia l neural
networks is their capacity to learn based on examples
(supervised learning). The network extracts the information
from the training samples. In this way it is able to
synthesize implicitly a certain model of the problem. In
other words, the neural network builds up alone an
algorithm to solve the problem. We firstly implemented as
a metapredictor a multi -layer perceptron with one hidden
layer and back-propagation learning algorithm just for

understanding the idea’s potential performance. The input
vector consists of one k-bit confidence sequence for each
predictor (N=3k), representing the last k binary codified
behaviors: 1 for a correct prediction and 0 for
misprediction. The neural network returns through its
output layer the selected predictor, using one neuron for
each predictor (P=3). It is selected the predictor
corresponding to the neuron with the highest output value,
but a prediction is generated only if this value is greater
than a certain threshold. In our previous works [16] we
proved based on experiments that the optimal number of
hidden layer neurons is N+1, N being the number of input
layer neurons. In Fig. 5 is presented the structure of the
adaptive neural metapredictor with one hidden layer.

M = N+1
neurons

P = 3
neurons

N = k*3
neurons

H idden
layer

Output
layer

Input
layer

L1

Lk

I1

Ik

C 1

C k

 L (last value predictor)

 I (stride predictor)

 C (context-based predictor)

Fig. 5. The structure of the neural metapredictor

For the training/learning process we used the well -
known back-propagation algorithm [9], adapted as below:

1. Create a feed-forward network with N inputs,

1?? NM hidden units and P output units.

2. Initialize all network weights MjNiW ji ,1;,1;1
, ??

and PjMiW ji ,1;,1;2
, ?? , to small random numbers

belonging to the [0.3, 0.7] interval.

In the following t k represents the value of k’s neuron from
the output layer and Ok is the desired value of the same
neuron.

3. Until ? ? ? ? :),(
2
1 2

)(
dothresholdTOtWE

POutputsk
kk ??? ?

?

3.1. Input the instance X to the network and compute

the output O (matrix product).
21 WWXO ??? (1)

3.2. For each network output unit k , Pk ,1? ,
calculate its error term k? .

? ?? ?kkkkk OtOO ??? 1? (2)

3.3. For each hidden unit h , Mh ,1? , calculate its
error term h?

? ? ?
?

???
)(

2
,1

POutputsk
khkhhh WOO ?? (3)

3.4. Update each network weight jiW ,

jijiji WWW ,,, ??? (4)

jiiji XW ,, ???? ?? (5)

 where ? is the learning step.

We used the following activation function:

x
e

xF ??
?

1

1
)((6)

IV. EXPERIMENTAL RESULTS

We developed an execution driven simulator derived
from Simple Scalar tool set [13]. It was simulated the
execution of 5 million dynamic instructions from different
SPEC’95 benchmarks. Statistical results based on
simulation have proved that common-used programs are
characterized by strong value repetitions [8], [14]. The
main causes for this phenomenon are: data and code
redundancy, program constants, and the compiler routines
that resolve virtual function calls, memory aliases, etc. The
register value locality is frequently met in programs and
exhibits the number of time each register is written with a
value that was previously seen in the same register and
dividing by the total number of dynamic instructions
having thi s register as destination field [2], [4]. For the
Value Locality metric we used the following formula:

?

?

?

??
n

i

k

k
j

kj

ifV

iVL
RVL

1

n

1i

)(Re

)(
)((7)

n = number of SPEC’95 simulated benchmarks;
j = history length (1, 4, 8 respectively 16);
k = register’s number;

)i(fReV k = number of dynamic instructions having
register Rk as destination (on benchmark i);

)i(VLk
j = number of times when register R k is written

with a value that was previously seen in last j values of the
same register (on benchmark i).

The next figure gives emphasis to the concept of value
locality on MIPS registers. As it can be observed (Fig. 6),
the value locality on some registers is remarkable high
(90%), and this predictability naturally leads us to the idea
of value prediction implemented on these favorable
registers. In the next investigations, we are focusing only
on the predictable registers, having value locality higher
than a certain threshold (70%).

0
10
20
30
40
50
60
70
80
90

100

R1 R2 R3 R4 R5 R6 R7 R8 R16 R17 R18 R19 R20 R21 R22 R23 R29 R30 R31

MIPS Registers

V
al

ue
 L

oc
al

ity
 [%

]

History 1
History 4
History 8
History 16

Fig. 6. Value locality on registers

In this work we developed and evaluated several

different metapredictors (presented in paragraph III) in
order to capture certain type of value predictabilities from
SPEC’95 benchmarks and to obtain higher prediction
accuracy. The prediction accuracy represents the number of
correctly predicted registers divided to the total number of
dynamic instructions having these registers as destination.
The confidence metric further introduced represents the
number of correctly predicted values related to a certain
register (Ri) when the attached predictor was into a
predictable state divided to the total number of predictable
states associated to that register (Ri).

Starting with a minimal superscalar architecture, we
studied how will be affected the simulator’s perfo rmance

by the variation of its parameters. We began evaluating the
heuristic non -adaptive metapredictors (presented in Fig. 3)
which select one of the predictors based on their last k
behaviors stored in a logic left shift register associated with
each predictor. The predictor with the highest number of
favorable behaviors (number of logical ones) has priority.
The predicted value is used only if the selected predictor
encountered a number of favorable behaviors at least equal
with a certain threshold. Figu res 7 and 8 show how the
threshold’s value affects the prediction accuracy and
respectively the confidence, using a heuristic metapredictor
with k=3.

72,45

68,93
65,10

0
10
20
30
40
50
60
70
80
90

100

R1 R7
R17 R20 R21 R22 R23 R29 R30 R31

Aver
age

MIPS Registers

Pr
ed

ic
tio

n
A

cc
ur

ac
y

[%
]

Threshold=1
Threshold=2
Threshold=3

Fig. 7. Non-adaptive Metapredictor: prediction accuracy for different thresho lds (k=3)

90,15

94,57

100,00

0
10
20
30
40
50
60
70
80
90

100

R1 R7
R17 R20 R21 R22 R23 R29 R30 R31

Aver
age

MIPS Registers

C
on

fid
en

ce
 [%

]
Threshold=1
Threshold=2
Threshold=3

Fig. 8. The non-adaptive Metapredictor: confidence for different thresholds (k=3)

We continued our study evaluating the non -adaptive

metapredictors with confidence automata (presented in Fig.
4). Each predictor has associated a 4-state automata and the
predictor with the highest confidence has priority. A

prediction is generated only in the predictable strong states.
Figures 9 and 10 show how the threshold’s value affects
the prediction accuracy and respectively the co nfidence of
these predictors.

69,82
68,11

0
10
20
30
40
50
60
70
80
90

100

R1 R7
R17 R20 R21 R22 R23 R29 R30 R31

Aver
age

MIPS Registers

Pr
ed

ic
tio

n
A

cc
ur

ac
y

[%
]

Threshold=2 states
Threshold=1 state

Fig. 9. The prediction accuracy measured for different thresholds (prediction in 1 or 2 strong states) using a metapredictor

with automata

94,70

100,00

84
86
88
90
92
94
96
98

100

R1 R7
R17 R20 R21 R22 R23 R29 R30 R31

Aver
age

MIPS Registers

C
on

fid
en

ce
 [%

]

Threshold=2 states
Threshold=1 state

Fig. 10. The confidence measur ed for different thresholds (prediction in 1 or 2 strong states) using a metapredictor with

automata

We continued our evaluations with the adaptive neural
metapredictor (Fig. 5), with an input vector consisting of
one k-bit sequence for each predictor (N=3k), representing
the last k binary codified behaviors: 1 for a correct
prediction and 0 for misprediction. The neural network
returns through its output layer the selected predictor, using

one neuron for each predictor (P=3). It is selected the
predictor corresponding to the neuron with the highest
output value, but a prediction is generated only if this value
is greater than a certain threshold. Figures 11 and 12 show
how the threshold’s value affects the prediction accuracy
and respectively the confidenc e of the neural network:

71,59 68,60

59,01

0
10
20
30
40
50
60
70
80
90

100

R1 R7
R17 R20 R21 R22 R23 R29 R30 R31

Aver
age

Registers

Pr
ed

ic
tio

n
A

cc
ur

ac
y

[%
]

Threshold=0.1
Threshold=0.5
Threshold=0.9

Fig. 11. The neural metapredictor’s prediction accuracy for different thresholds (k=3)

84,78
91,41

95,85

0
10
20
30
40
50
60
70
80
90

100

R1 R7
R17 R20 R21 R22 R23 R29 R30 R31

Aver
age

MIPS Registers

C
on

fid
en

ce
 [%

]

Threshold=0.1
Threshold=0.5
Threshold=0.9

Fig. 12. The neural metapredictor’s confidence for different thresholds (k=3)

It can be observed that each metapredictor, for a high

threshold value, has less global prediction accuracy but a
higher confidence. Practically, the probability that local
prediction generated by high confidence states to be correct
significantly increases thro ugh reducing the cases when the
structure makes a prediction. The disadvantage is that the

percentage of cases in which is made a prediction
dramatically decreases.

The next parameter we varied is the history length (k).
Fig. 13 shows how is affected the prediction accuracy and
respectively the confidence of a neural network by the
behavior history length, using a threshold of 0.1. It can be
observed that the optimal value of k is 3.

83,49

71,83

84,78

71,59

65

70

75

80

85

90

Prediction Accuracy Confidence

[%
]

k = 1
k = 2
k = 3
k = 4

Fig. 13. Study of prediction accuracy and confidence varying the behavior history length for a threshold of 0.1

Taking into account of all previous experimental
results the next table exhibits an interesting conclusion: in
spite of pretty small global prediction accuracy (72.45% in
average on all favorable registers) there are some registers

(R1, R22, R29 and R31) with prediction accuracies greater
than 90%. The accuracy gain obtained on these registers
versus our previous hybrid predictor [2], [4] is 2.27%.

Register Value Prediction Accuracy

Register number

Metapredictor
with automata
(threshold=1 state)

The non-adaptive (heuristic)
metaprediction:
 (threshold = 1)

The neural
metapredictor
(threshold=0)

Hybrid
predictor

1 89.034 89.028 88.999 86.81
22 85.477 85.647 84.146 81.43
29 95.289 95.287 95.284 94.74
31 95.642 95.643 95.599 94.48

Average 91.3605 91.40125 91.007 89.365
Accuracy gain
obtained vis a vis of
hybrid predictor [%] 2.23 2.27 1.83

TABLE I. The prediction accuracy obtained on the best four favorable registers

V. CONCLUSIONS

In this paper we proposed to improve the register value
prediction’s accuracy by metaprediction. We introduced
several different metapredictors, in order to properly select
the current best predictor: two static metapredictors based
on predictors’ confidences, and a dynamic one, represented
by a neural network. One of the static metapredictors uses
three 4-state confidence automata: one for the context-
based predictor, one for the stride predictor and another one
for the last value predictor. The predictor with the highest
confidence has priority and a prediction is generated only

in the predictable strong states. Using this hybrid predictor
we obtained an average global prediction accuracy of
69.81% with a confidence of 94.7%. Predicting onl y in the
strongest state of the automata we obtained an average
global prediction accuracy of 68.1% with a confidence of
100%.

The other static metapredictor selects one of the
predictors based on their last k behaviors (correct/incorrect
prediction). These behaviors are stored in a logic left shift
register associated with each predictor. The predictor with
the highest number of favorable behaviors (number of
logical ones) has priority. As an example, with a selection

based on the last three behaviors of each predictor (k=3),
and generating prediction only if the number of favorable
predictions is at least 2 (threshold=2), we obtained a global
prediction accuracy of 68.93% with a confidence of
94.57%. For a threshold of 1 (predict only in the strongest
state) the global prediction accuracy is 65.09% with a
confidence of 100%.

Another idea consists in implementing a dynamic
metaprediction structure represented by a simple neural
network (NN) in order to select the best predictor at a
certain moment. We impl emented as metapredictor a multi -
layer perceptron with one hidden layer and back -
propagation learning algorithm. The input vector consists
of one k-bit sequence for each predictor, representing the
last k binary codified behaviors: 1 for a correct predicti on
and 0 for misprediction. The neural network returns
through its output layer the selected predictor, using one
neuron for each predictor. It is selected the predictor
corresponding to the neuron with the highest output value,
but a prediction is generat ed only if this value is greater
than a certain threshold. With a neural selection, based on
the last three behaviors (k=3) and a threshold value of 0.1
we obtained an average global prediction accuracy of
71.58% with a confidence of 84.77%. For a threshol d of
0.9 the global prediction accuracy is 59.01% with a
confidence of 95.85%.

Judging from the confidence point of view it can be
observed that the non-adaptive metapredictor with
automata and prediction in the strongest state is the
optimal. Using this metapredictor we obtained a global
prediction accuracy of 68.11% with a confidence of 100%.
A further challenge will be to implement in hardware an
efficient neural dynamic metapredictor.

REFERENCES

[1] Calder B., Reinman G. and Tullsen D. Selective Value

Prediction, Proceedings of the 26th International
Symposium on Computer Architecture, pages 64 -74,
May 1999.

[2] Florea A., Vintan L., Sima D. Understanding Value
Prediction through Complex Simulations, proceedings
of the 5th International Conference on Technic al
Informatics, University “Politehnica” of Timisoara,
Romania, October, 2002.

[3] Gabbay F., Mendelsohn A. Using Value Prediction To
Increase The Power Of Speculative Execution
Hardware, ACM Transactions On Computer Systems,
vol 16, nr. 3, 1998.

[4] Gellert A. Contributions to speculative execution of
instructions by dynamic register value prediction, MSc

Thesis, University “Lucian Blaga” of Sibiu, Computer
Science Department, 2003 (in Romanian).

[5] Lepak K. M., Lipasti M. H. On the Value Locality of
Store Instructions, Proceedings of the 27th Annual
International Symposium on Computer Architecture,
Vancouver, June 2000.

[6] Lepak K. M., Lipasti M. H. Silent Stores for Free,
Proceedings of the 33rd Annual ACM/IEEE
International Symposium on Microarchitecture
(MICRO33), California, USA, 2000.

[7] Lipasti M. H., Shen J. P. Exceeding the Dataflow Limit
via Value Prediction, Proceedings of the 29th Annual
ACM/IEEE International Symposium on
Microarchitecture, December 1996.

[8] Lipasti, M. H., Wilkerson, C. B., Shen, J. P. Value
Locality and Load Value Prediction, Proceedings of
the 7th International Conference on Architectural
Support for Programming Languages and Operating
Systems, pp. 138-147, October 1996.

[9] Mitchell T., Machine Learning, McGraw-Hill, 1997.
[10] Rabiner R. L. A Tutorial on Hidden Markov Models

and Selected Applications in Speech Recognition,
Proceedings of the IEEE, Vol. 77, No. 2, February
1989.

[11] Rychlik B., Faistl J., Krug B., Kurland A., Jung J.,
Velev M. and J. Shen. Efficient and Accurate Value
Prediction Using Dynamic Classification, Technical
Report, Department of Electrical and Computer
Engineering, Carnegie Mellon Univ., 1998.

[12] Sazeides Y. An analysis of value predictability and its
application to a superscalar processor, PhD Thesis,
University of Wisconsin -Madison, 1999.

[13] Simplescalar, The SimpleSim Tool Set,
ftp://ftp.cs.wisc.edu/pub/sohi/Code/simplescalar

[14] Sodani A. Dynamic Instruction Reuse, PhD Thesis,
University of Wisconsin – Madison, USA, 2000.

[15] Tullsen D. M., Seng J. S. Storageless Value Prediction
using Prior Register Values, Proceedings of the 26th
International Symposium on Computer Architecture,
May 1999.

[16] Vintan L., Towards a High Performance Neural
Branch Predictor, International Joint Confe rence on
Neural Networks, Washington DC, USA, July 1999.

[17] Wang K., Franklin M. Highly Accurate Data Value
Prediction using Hybrid Predictors, Proceedings of the
30th Annual ACM/IEEE International Symposium on
Microarchitecture, December 1997.

[18] Wang Y., Lee S., and Yew P. Decoupling Value
Prediction on Trace Processors, Proceedings of the
6th International Symposium on High performance
Computer Architecture, 1999.

