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Abstract? Value Prediction (VP) is a relatively new 

technique that increases performance by eliminating true data 
dependencies constraints. Value prediction architectures 
allow data dependent instructions to issue and execute 
speculatively using the predicted values. This technique is 
built on the concept of value locality, which describes the 
likelihood of a previously seen value’s recurrence within a 
storage location. 

This paper extends the dynamic value prediction by 
exploiting the concept of register centric prediction instead of 
instruction centric prediction. The value localities obtained on 
some registers of MIPS architecture were quite remarkable 
leading to conclusion that value prediction might be 
successfully applied, at least on these favorable registers. The 
idea of attaching a value predictor for the processor’s 
favorable registers might involve new architectural 
techniques for improving performance and reducing the 
hardware cost of speculative microarchitectures. The register 
value prediction technique consists in predicting registers’ 
next values based on the previously seen values. It executes 
the subsequent data dependent instructions using the 
predicted values and the speculative execution will be 
validated when the correct values are known. If the value was 
correctly predicted the critical path is reduced, otherwise the 
instructions executed with wrong entries must be executed 
again. 

In our previous work we implemented a hybrid predictor 
composed by a context-based predictor and respectively a 
stride predictor, working together. The context-based 
predictor had always priority; in this way the value generated 
by the stride predictor was used only if the context-based 
predictor cannot generate a prediction. Obviously this fixed 
prioritisation is not optimal. In this paper our goal is to 
increase the prediction accuracy using a dynamic 
prioritisation based on some confidences. We introduce 
several different metaprediction structures, in order to 
properly select the current best predictor: two non-adaptive 
metapredictors and an adaptive one, represented by a neural 
network. The experimental results obtained using 
metaprediction applied only to the best four favorable 
registers (having high value locality degrees) show an average 
prediction accuracy of 91.40%, measured on SPEC 
benchmarks. The accuracy gain obtained on these registers 
versus the old hybrid predictor is 2.27%. 

 
 

Index Terms? metapredictors, dynamic value predictors, 
register value prediction, neural networks. 

I. INTRODUCTION 
 

Our proposed register value prediction (RVP) focuses 
dynamic value prediction to CPU’s context. It allows 
dependent instructions speculative execution by predicting 
the values of their corresponding destination registers. The 
RVP technique predicts the values of registers based on the 
last values stored in those registers; it executes the 
operations using the predicted values and the speculative 
execution will be validated when the correct values are 
known, after the complete instruction’s execution. If the 
value was correctly predicted the critical path might be 
reduced, otherwise the instructions executed with wrong 
entries must be executed again (recovery). 

Whether until now the prediction process was 
instruction (producer) or memory centered with great 
complexity and timing costs, by implementing the well-
known value prediction schemes [8], [12] centered on 
CPU’s registers will mainly decrease the hardware cost. 
However, there are some disadvantages. Addressing the 
prediction tables with instructions’ destination register 
name (during the decode stage) instead of Program Counter 
will cause some interferences and delays. However, we 
proved that with a sufficiently large history a hybrid 
predictor could eliminate this problem and achieve very 
high prediction accuracy. The main benefit of the proposed 
VP technique consists in unlocking the subsequent 
dependent instructions. 

In our previous works we developed and simulated 
several different basic value predictors, such as the last 
value predictor, the stride value predictor, the context-
based predictor and a hybrid value predictor. The last 
value predictors predict the new value as the same with the 
last value stored in the corresponding register. The stride 
value predictors identify stride sequences and predict them 
correspondingly. The context-based predictors predict the 
next value based on a particular stored pattern that was 
repetitively generated in the value sequence. An important 
class of contextual based predictors implement the 
“Prediction by Partial Matching” algorithm (PPM), based 
on a set of Markov predictors. We also implemented a 
hybrid predictor composed by a context-based predictor 
and respectively a stride predictor, working together. The 
context-based predictor had always priority; in this way the 
value generated by the stride predictor was used only if the 



context-based predictor cannot generate a prediction. 
Obviously this fixed prioritization is not optimal; this will 
be solved in this paper through our proposed 
metapredictors. 

Our goal is to improve the presented hybrid predictors, 
in order to obtain better prediction accuracy. We introduce 
several different metapredictors, used for a dynamic 
selection of the current best predictor: two non-adaptive 
(static) metapredictors and an adaptive (dynamic) neural 
metapredictor. 

The organization of the rest of this paper is as follows. 
In section II we review related work in the field of value 
prediction. Section III presents the metaprediction concept 
and describes the implemented predictors. Section IV 
includes simulation methodology and experimental results 
obtained using a simulator that we developed. Finally, 
section V suggests directions for future works and 
concludes the paper. 
 
 

II. RELATED WORK 
 

Lipasti and Shen [8] first introduced the concept of 
value locality as the third facet of the principle of locality 
(temporal and spatial). They defined the value locality as 
"the likelihood of the recurrence of a previously-seen value 
within a storage location" [8] in a processor. When the 
"storage location" is a single condition bit into a processor, 
it serves as the basis of branch prediction techniques. 
Statistical results based on laborious simulations have 
proved that common-used programs are characterized by 
strong value repetitions. Value prediction techniques 
exploit value locality to collapse true data dependencies 
exceeding the dataflow limit. 

Based on the dynamic correlation between load 
instruction addresses and the values being loaded, Lipasti 
[7] proposed a new data-speculative micro-architectural 
technique entitled load value prediction that can effectively 
exploit value locality to collapse true data dependencies 
exceeding the dataflow limit and enhancing the instruction 
level parallelism, reduce average memory latency and 
bandwidth requirement and provide measurable 
performance gains. 

Relatively recent studies [5] introduced the Store 
locality concept and Store prediction methods, with good 
results especially for multiprocessor systems. It is 
introduced the “silent Store” concept, meaning that a Store 
writes the same value like its previous instance (34% - 68% 
of the dynamic Store instructions are silent Stores). So, 
removing these Store instructions at some points in the 
program’s execution (either statically at compile time, or 
dynamically at run time) some potential benefit can be 
gained in execution time and/or code size [5]. Also, there 
are reduced: the pressure on cache write ports, the pressure 
on store queues and the data bus traffic outside the 
processor chip. The free silent store squashing concept is 
based on idle read port stealing to perform store verifies 
and aggressive load/store queue to exploit temporal and 
spatial locality for store squashing [6]. 

In [12] Sazeides developed an empirical classification 
of value sequences produced by instructions. There are two 
kinds of value predictability existing in programs: value 
repetition and value computability. In order to capture 
these certain types of value predictability, the authors have 
been proposed two distinct main categories of predictors: 
computational and contextual. Two important 
characteristics were also defined for understanding 
prediction behavior. One is the Learning Time (LT), which 
is the number of values that have to be observed before the 
first correct prediction. The second is the Learning Degree 
(LD), which is the percentage of correct predictions 
following the first correct prediction. 

Computational predictors are predicting based on some 
previous values in an algorithmic manner, therefore 
according to a deterministic recurrence formula. An 
incremental predictor belongs to the computational class. 
Lipasti and Shen introduced the stride predictor in [7] and 
Sazeides [12] generalized the idea. A stride sequence is a 
value sequence in which the later value can be computed 
by the immediate previous value and a stride. Last value 
predictors were used for the first time in [8] to predict load 
values. In some subsequent work the value prediction 
process was extended to other types of instruction (add, 
shift, store) [7], [2]. The simulation results indicated that 
the performance of computational prediction varies 
between instructions types indicating that its performance 
can be further improved if the prediction function matches 
the functionality of the predicted instruction. 

The contextual predictor predicts the next value based 
on a particular stored pattern (context) that is repetitively 
generated in the value sequence. Theoretically they can 
predict any repetitive sequences. A context predictor is of 
order k if its context information includes the last k values, 
and, therefore, the search is done using this pattern of k 
values length. In fact, in this case the prediction process is 
based on a simple Markov model [10]. The results of 
laborious simulation on SPEC benchmarks pointed out that 
a single predictor cannot capture all the various types of 
predictability patterns that occur in programs. This suggests 
that a hybrid scheme might be useful for enabling high 
prediction accuracy at lower cost [8], [17]. Although the 
hybrid value predictors can provide more correct 
predictions than single predictors, they consume more 
hardware resources. More importantly, they can waste the 
limited hardware resources available since every 
instruction being predicted occupies a unique entry in each 
of the component predictors. 

Rychlik [11] combined a last, a stride, and a two-level 
value predictor to an overall hybrid value predictor. In 
order to efficiently utilize the hardware resources, they 
provided the dynamic classification scheme to dynamically 
distribute instructions into proper component predictors 
during run-time [11]. Although this dynamic classification 
scheme uses the hardware resources more efficiently, it 
cannot provide higher prediction accuracy than the hybrid 
value predictor. Lee and Yew [18] modified the dynamic 
classification scheme by reclassifying instructions after 
they cannot be predicted well by their previously assigned 



component predictor. Their modification improved this 
kind of hybrid value predictor.  

Calder [1] proposed some techniques that give priority 
for prediction to those instructions that belong to the 
longest data dependence chains in order to reduce the 
pressure on the limited value prediction resources (such as 
the limited table size and limited read/write ports).  For this 
reason, it is constructed partial data dependence graphs for 
instructions in the processor’s active instruction window 
during run -time. Also, for detecting the time consuming 
instructions it is required the compiler’s help together with 
some profiling information.  

Tullsen and Seng [15] proposed a technique entitled 
register-value prediction that identifies instructions that 
produce values that are already in the register file. 
Therefore, the corresponding results are predicted using the 
values belonging to the register file. Mainly, this technique 
uses the previous value in the instruction’s destination 
register as a prediction for the new r esult, in a statically or 
dynamically manner. In contrast to our work, this approach 
is instruction -centric, like all developed papers in this 
research area, instead of register -centric, as our approach 
is. According to this, the authors pointed out that i n their 
prediction approach “confidence counters are associated 
with instructions rather than registers”. As an alternative, 
our original register value prediction technique consists in 
predicting register’s next value based on the previously 
seen values. In order to implement this strategy we attach a 
value predictor for all the CPU’s favorable registers 
(having a high value locality degree). After instruction’s 
decode, in order to predict instruction’s destination the 
corresponding register value predictor is activated. Based 
on this approach, we developed in a systematical manner 
some context predictors 

Gabbay and Mendelson [3] developed a so called 
register-file predictor that is the closest predecessor to our 
register value prediction technique. They pr edict the 
destination value of a given instruction according to the last 
previously seen value and the stride of its destination 
register. Unfortunately the authors did not pursue further 
this particular idea by systematically developing new 
register-centric predictors and evaluating them through 
simulations.  
 
 

III. META PREDICTION 
 

A hybrid instruction value predictor combines two or 
more component predictors that each predicts the value of 
the current instruction destination. The hybrid predictor 
therefore needs a selection mechanism to predict which of 
the predictors is likely to be most accurate at a certain 
moment. This prediction of prediction accuracy is called in 
literature metaprediction. 

In this paper we used the following component 
predictors, all  of them centered on CPU’s registers instead 
on program’s instructions: a last value predictor, a stride 
predictor and a context-based predictor. Every component 
predictor provides two values: the predicted value and its 
confidence. A confidence mechanism performs speculation 
control by limiting the prediction to those that are likely to 
be correct. A high confidence represents the continuous 
correct predictability in a given history of that register.  

The metapredictor represents a second prediction level 
and it selects dynamically, based on their last behaviors 
(confidence), one of the predictors (last value, stride or 
contextual) in order to predict the next value for a certain 
destination register. The architecture used for 
metaprediction is presented in Fig. 2. 
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Fig. 2. The architecture used for metaprediction  



A. Heuristic Non-Adaptive Metapredictors 
 

The first non-adaptive metapredictor (we called it 
“heuristic”) selects one of the predictors based on their last 
k behaviors (correct/incorrect prediction). A logical one 
(‘1’) means a correct prediction and a logical zero (‘0’) 
means a miss -prediction. These behaviors are stored in a 
logic left shift register associated with each predictor (Fig. 
3).  

 
 

V1    V2     V3    … ..    Vk

1         2           3         ...…         k

Sequence of the last
k behaviors (0/1):

History index:

 

Fig. 3. Logic left shift  register associated with each 
predictor 

The predictor with the highest number of favorable 
behaviors (number of logical ones) has priority. The 
predicted value is used only if the selected predictor 
encountered a number of favorable behaviors higher than a 
certain threshold. In other words a prediction is generated 
only in the case of an acceptable confidence.  
 
 
B. Non-Adaptive Metapredictors With Automata 
 

The other one non-adaptive metapredictor uses three 4-
states confidence automata – saturating counters: one for 
the context-based predictor, one for the stride predictor and 
another one for the last value predictor. The automata 
initially are in the unpredictable state and they are adjusted 
after each prediction, when the real values are known. The 
predictor with the highest confidence has priority and a 
prediction is generated only in the corresponding two 
predictable states. The structure of the 4-states automata is 
presented in Fig. 4.  

 
 

 
Fig. 4. The structure of the 4-state automata 

 
 
 
C. Neural Adaptive Metapredictors 
 

Another idea consists in implementing a dynamic 
metapredictor represented by a simple neural network (NN) 
in order to select the best predictor at a certain moment. It 
is well known that a great advantage of the artificia l neural 
networks is their capacity to learn based on examples 
(supervised learning). The network extracts the information 
from the training samples. In this way it is able to 
synthesize implicitly a certain model of the problem. In 
other words, the neural network builds up alone an 
algorithm to solve the problem. We firstly implemented as 
a metapredictor a multi -layer perceptron with one hidden 
layer and back-propagation learning algorithm just for 

understanding the idea’s potential performance. The input 
vector consists of one k-bit confidence sequence for each 
predictor (N=3k), representing the last k binary codified 
behaviors: 1 for a correct prediction and 0 for 
misprediction. The neural network returns through its 
output layer the selected predictor, using one neuron for 
each predictor (P=3). It is selected the predictor 
corresponding to the neuron with the highest output value, 
but a prediction is generated only if this value is greater 
than a certain threshold. In our previous works [16] we 
proved based on experiments that the optimal number of 
hidden layer neurons is N+1, N being the number of input 
layer neurons. In Fig. 5 is presented the structure of the 
adaptive neural metapredictor with one hidden layer.  
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Fig. 5. The structure of the neural metapredictor 

 
 

For the training/learning process we used the well -
known back-propagation algorithm [9], adapted as below:  

 
1. Create a feed-forward network with N  inputs, 

1?? NM  hidden units and P  output units. 

2. Initialize all network weights MjNiW ji ,1;,1;1
, ??  

and PjMiW ji ,1;,1;2
, ?? , to small random numbers 

belonging to the [0.3, 0.7] interval.  
 
In the following t k represents the value of k’s neuron from 
the output layer and Ok is the desired value of the same 
neuron. 
 

3. Until ? ? ? ? :),(
2
1 2

)(
dothresholdTOtWE

POutputsk
kk ??? ?

?
 

 
3.1.  Input the instance X  to the network and compute 

the output O  (matrix product). 
21 WWXO ???    (1) 

3.2.  For each network output unit k , Pk ,1? , 
calculate its error term k? . 

? ?? ?kkkkk OtOO ??? 1?   (2) 
 

3.3.  For each hidden unit h ,  Mh ,1? ,  calculate its 
error term h?  

? ? ?
?

???
)(

2
,1

POutputsk
khkhhh WOO ??  (3) 

3.4.  Update each network weight jiW ,  

jijiji WWW ,,, ???   (4) 

jiiji XW ,, ???? ??   (5) 

 
 where ?  is the learning step.  
 
We used the following activation function:  

 

x
e

xF ??
?

1

1
)(    (6) 

 
 

IV. EXPERIMENTAL RESULTS 
 

We developed an execution driven simulator derived 
from Simple Scalar tool set [13]. It was simulated the 
execution of 5 million dynamic instructions from different 
SPEC’95 benchmarks. Statistical results based on 
simulation have proved that common-used programs are 
characterized by strong value repetitions [8], [14]. The 
main causes for this phenomenon are: data and code 
redundancy, program constants, and the compiler routines 
that resolve virtual function calls, memory  aliases, etc. The 
register value locality is frequently met in programs and 
exhibits the number of time each register is written with a 
value that was previously seen in the same register and 
dividing by the total number of dynamic instructions 
having thi s register as destination field [2], [4]. For the 
Value Locality metric we used the following formula:  
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n = number of SPEC’95 simulated benchmarks;  
j = history length (1, 4, 8 respectively 16);  
k = register’s number;  

)i(fReV k  =  number of dynamic instructions having 
register Rk as destination (on benchmark i); 

)i(VLk
j  = number of times when register R k is written 

with a value that was previously seen in last j values of the 
same register (on benchmark i). 

The next figure gives emphasis to the concept of value 
locality on MIPS registers. As it can be observed (Fig. 6), 
the value locality on some registers is remarkable high 
(90%), and this predictability naturally leads us to the idea 
of value prediction implemented on these favorable 
registers. In the next investigations, we are focusing only 
on the predictable registers, having value locality higher 
than a certain threshold (70%).  
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Fig. 6. Value locality on registers  

 
In this work we developed and evaluated several 

different metapredictors (presented in paragraph III) in 
order to capture certain type of value predictabilities from 
SPEC’95 benchmarks and to obtain higher prediction 
accuracy. The prediction accuracy represents the number of 
correctly predicted registers divided to the total number of 
dynamic instructions having these registers as destination. 
The confidence metric further introduced represents the 
number of correctly predicted values related to a certain 
register (Ri) when the attached predictor was into a 
predictable state divided to the total number of predictable 
states associated to that register (Ri). 

Starting with a minimal superscalar architecture, we 
studied how will be affected the simulator’s perfo rmance 

by the variation of its parameters. We began evaluating the 
heuristic non -adaptive metapredictors (presented in Fig. 3) 
which select one of the predictors based on their last k 
behaviors stored in a logic left shift register associated with 
each predictor. The predictor with the highest number of 
favorable behaviors (number of logical ones) has priority. 
The predicted value is used only if the selected predictor 
encountered a number of favorable behaviors at least equal 
with a certain threshold. Figu res 7 and 8 show how the 
threshold’s value affects the prediction accuracy and 
respectively the confidence, using a heuristic metapredictor 
with k=3. 
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Fig. 7. Non-adaptive Metapredictor: prediction accuracy for different thresho lds (k=3) 
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Fig. 8. The non-adaptive Metapredictor: confidence for different thresholds (k=3)  

 
We continued our study evaluating the non -adaptive 

metapredictors with confidence automata (presented in Fig. 
4). Each predictor has associated a 4-state automata and the 
predictor with the highest confidence has priority. A 

prediction is generated only in the predictable strong states. 
Figures 9 and 10 show how the threshold’s value affects 
the prediction accuracy and respectively the co nfidence of 
these predictors. 
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Fig. 9. The prediction accuracy measured for different thresholds (prediction in 1 or 2 strong states) using a metapredictor 

with automata 
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Fig. 10. The confidence measur ed for different thresholds (prediction in 1 or 2 strong states) using a metapredictor with 

automata 



We continued our evaluations with the adaptive neural 
metapredictor (Fig. 5), with an input vector consisting of 
one k-bit sequence for each predictor (N=3k), representing 
the last k binary codified behaviors: 1 for a correct 
prediction and 0 for misprediction. The neural network 
returns through its output layer the selected predictor, using 

one neuron for each predictor (P=3). It is selected the 
predictor corresponding to the neuron with the highest 
output value, but a prediction is generated only if this value 
is greater than a certain threshold. Figures 11 and 12 show 
how the threshold’s value affects the prediction accuracy 
and respectively the confidenc e of the neural network: 
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Fig. 11. The neural metapredictor’s prediction accuracy for different thresholds (k=3)  
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Fig. 12. The neural metapredictor’s confidence for different thresholds (k=3)  

 
It can be observed that each metapredictor, for a high 

threshold value, has less global prediction accuracy but a 
higher confidence. Practically, the probability that local 
prediction generated by high confidence states to be correct 
significantly increases thro ugh reducing the cases when the 
structure makes a prediction. The disadvantage is that the 

percentage of cases in which is made a prediction 
dramatically decreases.  

The next parameter we varied is the history length (k). 
Fig. 13 shows how is affected the prediction accuracy and 
respectively the confidence of a neural network by the 
behavior history length, using a threshold of 0.1. It can be 
observed that the optimal value of k is 3.  
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Fig. 13. Study of prediction accuracy and confidence varying the behavior history length for a threshold of 0.1  

 
 

Taking into account of all previous experimental 
results the next table exhibits an interesting conclusion: in 
spite of pretty small global prediction accuracy (72.45% in 
average on all favorable registers) there are some registers 

(R1, R22, R29 and R31) with prediction accuracies greater 
than 90%. The accuracy gain obtained on these registers 
versus our previous hybrid predictor [2], [4] is 2.27%. 

 
 
 

Register Value Prediction Accuracy 

 
Register number 

Metapredictor 
with automata 
(threshold=1 state) 

The non-adaptive (heuristic) 
metaprediction:  
        (threshold = 1) 

The neural 
metapredictor 
(threshold=0) 

Hybrid 
predictor 

1 89.034 89.028 88.999 86.81 
22 85.477 85.647 84.146 81.43 
29 95.289 95.287 95.284 94.74 
31 95.642 95.643 95.599 94.48 

Average 91.3605 91.40125 91.007 89.365 
Accuracy gain 
obtained vis a vis of 
hybrid predictor [%] 2.23 2.27 1.83  

TABLE  I. The prediction accuracy obtained on the best four favorable registers  

 
 

V. CONCLUSIONS 
 

In this paper we proposed to improve the register value 
prediction’s accuracy by metaprediction. We introduced 
several different metapredictors, in order to properly select 
the current best predictor: two static metapredictors based 
on predictors’ confidences, and a dynamic one, represented 
by a neural network. One of the static metapredictors uses 
three 4-state confidence automata: one for the context-
based predictor, one for the stride predictor and another one 
for the last value predictor. The predictor with the highest 
confidence has priority and a prediction is generated only 

in the predictable strong states. Using this hybrid predictor 
we obtained an average global prediction accuracy of 
69.81% with a confidence of 94.7%. Predicting onl y in the 
strongest state of the automata we obtained an average 
global prediction accuracy of 68.1% with a confidence of 
100%.  

The other static metapredictor selects one of the 
predictors based on their last k behaviors (correct/incorrect 
prediction). These behaviors are stored in a logic left shift 
register associated with each predictor. The predictor with 
the highest number of favorable behaviors (number of 
logical ones) has priority. As an example, with a selection 



based on the last three behaviors of each predictor (k=3), 
and generating prediction only if the number of favorable 
predictions is at least 2 (threshold=2), we obtained a global 
prediction accuracy of 68.93% with a confidence of 
94.57%. For a threshold of 1 (predict only in the strongest 
state) the global prediction accuracy is 65.09% with a 
confidence of 100%.  

Another idea consists in implementing a dynamic 
metaprediction structure represented by a simple neural 
network (NN) in order to select the best predictor at a 
certain moment. We impl emented as metapredictor a multi -
layer perceptron with one hidden layer and back -
propagation learning algorithm. The input vector consists 
of one k-bit sequence for each predictor, representing the 
last k binary codified behaviors: 1 for a correct predicti on 
and 0 for misprediction. The neural network returns 
through its output layer the selected predictor, using one 
neuron for each predictor. It is selected the predictor 
corresponding to the neuron with the highest output value, 
but a prediction is generat ed only if this value is greater 
than a certain threshold.  With a neural selection, based on 
the last three behaviors (k=3) and a threshold value of 0.1 
we obtained an average global prediction accuracy of 
71.58% with a confidence of 84.77%. For a threshol d of 
0.9 the global prediction accuracy is 59.01% with a 
confidence of 95.85%.  

Judging from the confidence point of view it can be 
observed that the non-adaptive metapredictor with 
automata and prediction in the strongest state is the 
optimal. Using this metapredictor we obtained a global 
prediction accuracy of 68.11% with a confidence of 100%. 
A further challenge will be to implement in hardware an 
efficient neural dynamic metapredictor.  
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