
ADVANCED TECHNIQUES FOR IMPROVING PROCESSOR
PERFORMANCE IN A SUPERSCALAR ARCHITECTURE

Gordon B. STEVEN,
University of Hertfordshire, Department of Computer Science, UK,

E-mail: comqgbs@herts.ac.uk

Lucian VINTAN, Adrian FLOREA,
University of Sibiu, Department of Computer Science, ROMANIA,

E-mail: vintan@cs.sibiu.ro

Abstract

The main aim of this short paper is to investigate
multiple-instruction-issue in a high-performance
superscalar architecture, illustrating the optimum values
for some processing parameters, as well as some
advanced techniques for improving processor
performance, such as dependence collapsing and
instruction bypassing. Our analysis is based on a trace
driven simulation method. The simulation results are
presented in terms of instructions per cycle (IPC) and we
summarised them by taking the harmonic mean over the
benchmark set. During the simulation we have used as a
main metric the average issue rate.

Key words:  Superscalar, Trace Driven Simulation,
Cache, Write Back, Write Through

1. INTRODUCTION

Researchers traditionally use simulation techniques, to
evaluate different processor pipeline configurations. First
a parameterised simulator is written for the processor
model; then a suite of benchmarks is executed to evaluate
the performance of different configurations. While this
well tried technique has generated many useful insights
into processor performance, there is always some concern
that results may have be biased by the characteristics of
the benchmarks used.

We used the traces obtained based on the eight C Stanford
integer benchmarks. These benchmarks were compiled
through the HSA (Hatfield Superscalar Architecture)
compiler, developed at the University of Hertfordshire,
UK, by Dr. G.B. Steven's Research Group. Further, the
traces were obtained using the HSA simulator, developed
at the same university [Ste96]. Based on these tools, we
have developed a trace driven simulator to investigate the
potential of some advanced techniques (like dependence
collapsing, instruction bypass using DWB – data write
buffer) for improving processor performance in a
superscalar architecture.

2. SIMULATION WORK
2.1. BENCHMARK PROGRAMS

The simulation work has been centred on the Stanford
integer benchmark suite, a collection of eight C programs
designed by Professor John Hennessy, to be representative
of non - numeric code while at the same time being
compact. The benchmarks are computationally intensive
with higher dynamic instruction counts. Although, many
applications are not represented by the benchmarks,
including graphics, multimedia, critical hand-coded
operating system routines. All these benchmarks were
compiled by the HSA Gnu C compiler, which targets the
HSA instruction set. The resulted HSA object code was
simulated by a dedicated HSA simulator [Ste96], which
generates the corresponding traces. Some characteristics
of the used traces are given in Table 1.

Benchmark Total instr. % Branches % (Load + Store) % ALU Description
Puzzle 804.620 23.11 17.01 59.87 Solves a cube packing problem
Bubble 206.035 15.08 29.55 55.36 Bubble sorts an array
Matrix 231.814 8.90 28.86 62.23 Matrix multiplication

Permute 355.643 12.35 40.56 47.07 Recursive computation of permutations
Queens 206.420 9.34 33.66 56.99 Solves the eight queens problem

Sort 72.101 11.35 23.65 64.98 Quick sorts a randomised array
Towers 251.149 11.45 38.38 50.15 Solves Towers of Hanoi problem (recursive)

Tree 136.040 17.76 26.62 55.61 Performs a binary tree sort

Table 1. Characteristics of the HSA traces



The average instruction number is about 273.000. The
average percentage of total instructions that are branches
is about 13%, that are Load is still 18%, that are Store is
about 12% and that are arithmetic is about 57% [Flo98].

2.2. THE SIMULATION METHOD

Following our aims, we developed a dedicated trace driven
simulator that uses the above mentioned traces. The most
important input parameters for this simulator are:
• FR – fetch rate – the instructions number that is fetched
from Instruction Cache: up to 16 IPC
• IBS – instruction buffer size: up to 64 instructions
• IRmax – parallel issue capability – the maximum
number of instructions that can be dispatched concurrently
from the Instruction Buffer: up to 8 IPC

• Instruction Latencies (measured in cycles): up to 20
cycles
• Type and Number of Functional Units
• Type and Size of Cache Memories (size of caches is
measured in location; a location of Instruction Cache
stores an instruction and a location from Data Cache
stores memory addresses)
During this research we use a direct-mapped split
(Instruction & Data) cache structure. Where not specified,
the results were obtained using an optimal superscalar
architecture [Flo98], with FR = 8, IBS = 16, IRmax = 4,
N_PEN  = 10 cycles (N_PEN - cycles required to load a
block from main memory). We have also used a two-port
data cache that can be accessed simultaneously by two
non-aliasing Load/Store instructions.

Fig. 1 The Simulated Architecture



3. SOME RESULTS

A. The potential of dependence collapsing for improving
processor performance

Dependence collapsing represents a technique that
resolves execution data Read After Write hazards for
instructions requiring ALU operation. Dependence
collapsing can reduce the latency eliminating data
dependencies by combining dependences among multiple
instructions into one complex instruction. This technique
improves the processor performance by “restructuring” the
data dependence graph. A general scheme capable of
collapsing involves arithmetic and logical instructions.
Instructions that will be collapsed can be non-consecutive.

There are at least two possible implementation strategies:
the first run-time strategy, based on a combining
hardware mechanism of instructions from prefetch buffer,
and second static strategy, a software combining realised
by instruction scheduler. In this work, we implement the
first strategy: in instruction buffer there are detected
possibly data dependencies and if it is possible then the
collapse is done under some certain rules (the dependence
is generate by an arithmetic instruction). Three dependent
instructions or two groups of two dependent instructions
belonging to the “instructions window” may be collapsed.
The distance separating the collapsed instructions is
nearly always less than 8.

FR=8; IR=4; IBS=16;NR_REG_GEN=4; N_PEN=10;
SIZE_IC=128;SIZE_DC=2048; 

Cache uniport

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

fb
ub

bl
e

fs
or

t

fp
er

m

fp
uz

zl
e

fq
ue

en
s

fm
at

rix

ftr
ee

fto
w

er

m
ed

ia

Issue Rate

Fara combining

Cu combining

Fig. 2 Processing rate on a single-port data cache

In the single-port data cache case, the processing rate
raises with 11.19% due to dependence collapsing. Also, in
the two-port data cache case, this technique improves

processor performance with 8.51% at average. The
maximum rise is 26.34% on queens benchmark. (figure 3)

FR=8; IR=4; IBS=16;NR_REG_GEN=4; N_PEN=10;
SIZE_IC=128;SIZE_DC=2048; 

Cache biport

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

fb
ub

bl
e

fs
or

t

fp
er

m

fp
uz

zl
e

fq
ue

en
s

fm
at

rix

ftr
ee

fto
w

er

m
ed

ia

Issue Rate

Fara combining

Cu combining

Fig. 3 Processing rate on a two-port data cache

Without
Combining

With
Combining

Without
Combining

With
Combining



Using dependence collapsing technique, on two-port data
caches, the processing rates are with 9.2% greater than

these get on single-port data caches, unlike 11.9% when
we didn’t use this technique.

FR=8; IBS=16; IR=4; N_PEN=10; 
SIZE_IC=128;SIZE_DC=896;CombInstr=2; 

Cache biport

0,0

5,0

10,0

15,0

20,0

fb
ub

bl
e

fs
or

t

fp
er

m

fp
uz

zl
e

fq
ue

en
s

fm
at

rix

ftr
ee

fto
w

er

m
ed

ia

Rata de instr.
  combinate
       [%]

NR_REG_GEN=3

NR_REG_GEN=4

Fig. 4 Influence of number of register file on the percentage of combined instruction

FR=8; IBS=16; IR=4; N_PEN=10; NR_REG_GEN=4; 
SIZE_IC=128;SIZE_DC=896; 

Cache biport

0,0

5,0

10,0

15,0

20,0

fb
ub

bl
e

fs
or

t

fp
er

m

fp
uz

zl
e

fq
ue

en
s

fm
at

rix

ftr
ee

fto
w

er

m
ed

ia

Rata de instr.
  combinate
       [%]

CombInstr=2

CombInstr=3

Fig. 5 Influence of parameter CombInstr on the percentage of combined instruction

CombInstr represents the number of combined
instructions. If this value is 3 it means that three
dependent instructions or two groups of two dependent
instructions belonging to the “instructions window” may
be collapsed. Variation from 2 to 3 of CombInstr
parameter determines a rise with 22% of percentage of
combined instruction (figure 5). Variation from 3 to 4 of
number of register file implies a rise with 20% of
percentage of combined instruction (figure 4). That means
the resource limitation has a negative impact about
techniques for improving processor performance.

B. Instruction bypass using DWB – data write buffer

DWB is a small write buffer, which contains the virtual
address and data that must be written in Data Cache.
Assuming that DWB has enough ports for supporting the
worst situation (a lot of Store instructions, independent
and concurrent stored in instruction window), offering
then multiple virtual writing ports [Tat98] although, Data
Cache has one or maximum two reading ports and just a
single writing port. We set the writing latency in DWB to
1 cycle and the number of cycles needed for writing data

Ratio of
Combining
instruction

[%]

Ratio of
Combining
instruction

[%]



from DWB to Data Cache to 2 or 3 cycles (variable).
Using DWB we eliminate the need of serialising Store
instructions with afferent penalties and besides, through
bypassing we can eliminate many “Load after Store”
hazards.
Variation from 2 to 3 cycles of DWB-latency implies a
diminution with 11.63% of processor performance. That

means the data writing process from DWB in Data Cache
must be hurried for improving processor performance.
Also, if the reading ports number raises from 1 to 2 the
processing rate is improved with 5%. The simulation
results show that bypassing technique at average
favouring by DWB improves processing performance with
17.87% (figure 6).

.

FR=8;IBS=16;IRmax=4;SIZE_IC=128;SIZE_DC=2048;
     BLOC_SIZE=8;NR_REG_GEN=4;N_PEN=10;WB;

UNIT_LD=1;UNIT_ST=1;

0

0,4

0,8

1,2

1,6

2

2,4
fb

ub
bl

e

fp
uz

zl
e

fp
er

m

fq
ue

en
s

fm
at

ri
x

ft
re

e

ft
ow

er

fs
or

t

m
ed

ia

Is s u e
Rate

C u  DWB

Fãrã DW B

Fig. 6 Processor performance improved with bypassing technique in DWB

C. Optimising BLOC_SIZE (the size of the data cache
block)

A way for improving the processor performance is the
cache optimisation by reducing miss rate. A simple way to
reduce miss rate is to increase the block size. Larger block
sizes will reduce compulsory misses. At the same time,
larger blocks increase the miss penalty. Since they reduce
the number of blocks in the cache, larger blocks may
increase conflict misses and even capacity misses if the
cache is small [Hen96]. To choose an optimal value for

data block size it requires an optimal trade-off between the
increased miss penalty and the decreased miss rate. After
simulation we got that the variation of BLOC_SIZE
parameter: from 4 to 8 implies an improving of processing
rate with 8.91%; from 8 to 16 with 5.61% and from 16 to
32 with just 1.91%. Thus, we recommend that optimum
value for BLOC_SIZE to be 8.

D. Optimising IRmax parameter (the parallel issue
capability)

 IBS=16; FR=8; N_PEN=10;
SIZE_IC=128;SIZE_DC=2048;

Cache biport

0,0
0,4
0,8
1,2
1,6
2,0
2,4
2,8
3,2
3,6

fb
ub

bl
e

fs
or

t

fp
er

m

fp
uz

zl
e

fq
ue

en
s

fm
at

rix

ftr
ee

fto
w

er

m
ed

ia

Issue Rate

IR=4 NR_REG-GEN=4

IR=8 NR_REG-GEN=8

Fig. 7 Influence of IRmax parameter about processing rate

With DWB
No DWB



High-performance superscalar processors attempt to
increase performance by issuing multiple instructions in
each processor cycle. Although, our simulation results
point out that the processor configuration with IRmax=8
(noted C1) outperforms another configuration having
IRmax=4 (noted C2) with only about 2% (figure 7). The
anomaly appeared on bubble benchmark is because by
growing up the parallel issue capability during the trace
execution it is obtaining a dynamic scheduling of
concurrent running instruction, different from a case C1
to C2, resulting a glide instruction window. Thus, it is
possible that on k-th issue step, the two gliding instruction
windows (first – C1, second – C2) will be therefore
completely disjunctive. Besides, in C1 case, by this
dynamic scheduling, will add some data dependencies
(data cache conflicts) that before (case C2), didn’t exist.
Anyway, the anomaly disappears in the case of a single
port data cache. Finally, we conclude that if the processors
don’t run scheduled benchmarks, it has no sense to choose
a parallel issue capability greater than 4.

4. CONCLUSIONS AND FURTHER WORK

The previous results show consistently that a substantial
performance growth is possible by using dependence
collapsing. We show that the raising of instruction
number that may be combined has a more significant
impact on processor’s performance. Also, by hardware
bypassing of instruction favouring by DWB the processing
performance is increased at average with 17.87%.
Regarding to write policy in data cache we proved that
write back is more adequate. For further research we are
working now to a method for reducing the cache miss
penalty, called “multiple load”. Assuming that the target
address of Load/Store instructions belonging to the
instruction buffer are known, it could be issued multiple
Loads instructions, which are reading from same block

from data cache and there are a no Store instruction,
intercalate between two Loads.

ACKNOWLEDGEMENTS

This research has been partially supported by the National
Romanian Agency for Research and Technology grant
4086/1998 and also through a sponsorisation obtained
from "S.C. PIM S.A. SIBIU".

REFERENCES

[1][Ste96] Steven G. B. et al. - A Superscalar
Architecture to Exploit Instruction Level Parallelism,
Proceedings of the Euromicro Conference, 2-5 September,
Prague, 1996.

[2][Tat98] Tate D., Steven G. - Adding a Cache
Simulator to the Hatfield Superscalar Project, University
of Hertfordshire, Technical Report, 1998.

[3][Flo98] Florea A. – Optimizarea proceselor de scriere
într-o arhitectura RISC superscalara de tip Harvard,
Teza de Masterat, Sibiu, 1998 (co-ordinator L. Vintan).

[4][Smi96] Smith J., Vassiliadis S. - The Performance
Potential Of Data Dependence Speculation & Collapsing,
Paris, Proc. of the 29th IEEE Int'l Symp. on
Microarchitecture, December 1996.

[5][Hen96] Hennesy J., Patterson D. - Computer
Architecture, A Quantitative Approach, Morgan
Kaufmann Publishers, Second Edition, 1996.

[6][Hill88] Hill M. – A Case for Direct-Mapped Caches,
IEEE Computer, December, 1988.


