
1) Matricea $A \in M_3(\mathbb{R})$, $A = \begin{pmatrix} 2 & x & 3 \\ x & -1 & x \\ 1 & 2 & a \end{pmatrix}$, cu $x \in \mathbb{R}$, $a \in \mathbb{R}$, este inversabilă pentru $\forall x \in \mathbb{R}$ dacă:

A) $a \in (2, +\infty)$; B) $a \in (-\infty, \frac{1}{2})$; C) $a \in \left(\frac{1}{2}, +\infty\right)$; D) $a \in \left[\frac{1}{2}, 1\right]$; E) $a \in \left(-\infty, \frac{1}{2}\right) \cup (2, +\infty)$

2) Să se rezolve ecuația matriceală:

$X \cdot \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix} = \begin{pmatrix} 2 & 4 \\ 3 & 7 \end{pmatrix}$

a) $\begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}$ b) $\begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix}$ d) $\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$ e) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

3) Fie matricea $X = \begin{pmatrix} 1 & 2 \\ 3 & -2 \end{pmatrix}$. Matricea X verifică ecuația:

A) $X^2 + 8I = O_2$; B) $X^2 - 2X + I = O_2$; C) $2X^2 - 5X + 8I = O_2$; D) $X + 4I = O_2$; E) $5X^2 + X - I = O_2$

4) Fie $A \in M_3(\mathbb{R})$, $A = \begin{pmatrix} x & 1 & m \\ x & x & 1 \\ 2 & 3 & 1 \end{pmatrix}$, $x \in \mathbb{R}$, $m \in \mathbb{R}$. Valorile parametrului m pentru care A este inversabilă sunt:

A) $(4 - 2\sqrt{2}, 4 + 2\sqrt{3})$; B) $(3 - \sqrt{2}, 3 + 2\sqrt{3})$; C) $(4 - \sqrt{2}, 4 + \sqrt{2})$; D) $(4 - 2\sqrt{2}, 4 + 2\sqrt{2})$; E) $(1, 3)$

5) Să se determine matricea X care verifică ecuația $\begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix} X = \begin{pmatrix} -1 & -2 \\ 3 & 0 \end{pmatrix}$

A) $X = \begin{pmatrix} 5 & 0 \\ 3 & 2 \\ 1 & 1 \end{pmatrix}$; B) $X = \begin{pmatrix} 3 & -2 \\ 1 & 3 \end{pmatrix}$; C) $X = \begin{pmatrix} 5 & 0 \\ -3 & 2 \\ 3 & 4 \end{pmatrix}$; D) $X = \begin{pmatrix} 5 & -2 \\ -3 & 0 \\ 3 & 3 \end{pmatrix}$; E) $X = \begin{pmatrix} 5 & 0 \\ -3 & 2 \\ 3 & 4 \end{pmatrix}$

6) Știind că matricea X este inversabilă, sistemul:

$\begin{pmatrix} X + Y = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ XY = X \end{pmatrix}$, are soluția:

Adrian FLOREA
Computers Science and Electrical Engineering, Sibiu
a) \(X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \); \(Y = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \)

b) \(X = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \); \(Y = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \)

c) \(X = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} \); \(Y = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \)

d) \(X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \); \(Y = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \)

e) \(X = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \); \(Y = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \)

7) Matricea:

\[
\begin{pmatrix}
2 & -3 & 4 & -5 \\
1 & 2 & \alpha & 0 \\
5 & -4 & 7 & \beta \\
\end{pmatrix}
\]

are rangul doi pentru:

a) \(\alpha = 2 \), \(\beta = -5 \)

b) \(\alpha = -1 \), \(\beta = -10 \)

c) \(\alpha = -3 \), \(\beta = 2 \)

d) \(\alpha = 1 \), \(\beta = -10 \)

e) \(\alpha = 3 \), \(\beta = -1 \)

8) Matricea

\[
A = \begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1 \\
\end{pmatrix}
\]

satisface relația \(A^3 = mA^2 + nA \) pentru:

a) \(m = -3 \), \(n = -2 \)

b) \(m = 3 \), \(n = -2 \)

c) \(m = -3 \), \(n = 5 \)

d) \(m = 1 \), \(n = 2 \)

e) \(m = 3 \), \(n = -7 \)

9) Fie \(A = \begin{pmatrix} 1 & 0 \\ 4 & 5 \end{pmatrix} \). Atunci \(A^n = \begin{pmatrix} 1 & 0 \\ x_n & y_n \end{pmatrix} \), iar \(\lim_{n \to \infty} \frac{x_n + y_n}{5^{n+1}} \) este:

a) 1

b) 0

c) 2

d) -2

e) -1

10) Fie matricea \(A = \begin{pmatrix} 1 & \omega \\ \omega & 1 \end{pmatrix} \), unde \(\omega = \frac{-1 + i\sqrt{3}}{2} \). Știind că

\(A^2 + A^3 + \ldots + A^n = \alpha_n A \), atunci \(\alpha_n \) este:

a) \(2 - 2^n \)

b) \(2^n \)

c) \(2^n - 2 \)

d) \(2^n + 1 \)

e) \(2^n - 3 \)

11) Fie matricea \(A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \). Se cere:
a) Sa se demonstreze ca: \(A^n = \begin{pmatrix} 1 & 3n - 1 \\ 0 & 3^n \end{pmatrix} \), (\(\forall \) n \(\in \) N*).

b) Sa se calculeze det \((A + A^2 + \cdots + A^n)\).

12) Sa se arate ca: \(\left(\begin{array}{cc} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{array} \right)^{12} = 2^{12} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \).

13) Fie matricea \(A \in M_3(R) \), unde \(A = \begin{pmatrix} \propto & 1 & 1 \\ 1 & \propto & 1 \\ 1 & 1 & \propto \end{pmatrix} \).

Se cere :

a) Sa se determine valorile lui \(\propto \) pentru care matricea \(A \) este nesingulara.

b) Pentru \(\propto = 2 \), sa se gaseasca inversa matricei \(A \).

14) Fie matricea \(A \in M_2(R) \), unde \(A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \). Sa se calculeze \(A^n \).

15) \(A^2 - (a+d)A + (\text{det}A)I_2 = O_2 \)

1) Să se rezolve sistemul
\[
\begin{align*}
2x + 3y + z &= 8 \\
x + 2y + 3z &= 7 \\
3x + y + 2z &= 9 \\
\end{align*}
\]

a) \(x = 1, \ y = 2, \ z = 3\)
b) \(x = 2, \ y = 1, \ z = 1\)
c) \(x = 3, \ y = 2, \ z = 2\)
d) \(x = 1, \ y = 1, \ z = 4\)
e) \(x = 1, \ y = 3, \ z = 2\)

2) Mulțimea valorilor parametrului real \(a\), pentru care sistemul
\[
\begin{align*}
ax + y + z &= 0 \\
x + ay + z &= 0 \\
x + y + az &= 0 \\
\end{align*}
\]
u nu are soluție unică este:

A) \(a \in \emptyset\); B) \(a \in \{-2, 1\}\); C) \(a \in \mathbb{R}\); D) \(a \in (3, 4)\); E) \(a \in \{-1, 2\}\);

3) Se consideră ecuația:
\[
\begin{vmatrix}
\ln x & \ln a_1 & \ln a_2 & \ln a_3 \\
\ln a_1 & \ln x & \ln a_3 & \ln a_2 \\
\ln a_2 & \ln a_3 & \ln x & \ln a_1 \\
\ln a_3 & \ln a_2 & \ln a_1 & \ln x \\
\end{vmatrix} = 0 .
\]
Radacinile ei sunt:

a) \(x_1 = a_1 a_2 a_3, \ x_2 = a_1 a_3, \ x_3 = a_1 a_2, \ x_4 = a_2 a_3\);

b) \(x_1 = \frac{1}{a_1 a_2 a_3}, \ x_2 = \frac{a_1 a_2}{a_3}, \ x_3 = \frac{a_1 a_3}{a_2}, \ x_4 = \frac{a_2 a_3}{a_1}\)

c) \(x_1 = x_2 = x_3 = x_4 = a_1 a_2 a_3\)

d) \(x_1 = \frac{1}{a_1 a_2 a_3}, \ x_1 = \frac{a_1}{a_2 a_3}, \ x_2 = \frac{a_2}{a_1 a_3}, \ x_4 = \frac{a_3}{a_1 a_2}\)

e) \(x_1 = \frac{1}{a_1 a_2}, \ x_2 = \frac{1}{a_1 a_3}, \ x_3 = \frac{1}{a_1 a_2}, \ x_4 = \frac{1}{a_1 a_2 a_3}\).

4) Se consideră ecuația:
\[
\begin{vmatrix}
e^{2x} & e^{-a} & e^{-x}
e^{-a} & e^{2x} & e^{-x}
e^{-x} & e^{-x} & e^{2a}
\end{vmatrix} = 0 ,
\]
unde \(a\) este constant.

Soluția ecuației este:
Pregătire Admitere – Algebră și analiză matematică; 11.05.2013

a) \(x = a \), \hspace{1cm} b) \(x = \frac{a}{2} \), \hspace{1cm} c) \(x = -a \), \hspace{1cm} d) \(x = -\frac{a}{2} \), \hspace{1cm} e) \(x = 2a \).

5) Se consideră şirul \((a_n)_{n \geq 1} \), care este determinantul de ordinul \(n \), iar \(a \in \mathbb{R} \):

\[
\begin{vmatrix}
 a+x & a & \cdots & a \\
 a & a+x & \cdots & a \\
 \vdots & \vdots & \ddots & \vdots \\
 a & a & \cdots & a+x
\end{vmatrix} = 0, \quad \forall n \in \mathbb{N}^* .
\]

Dacă \(L = \lim_{n \to \infty} \left(\lim_{x \to 0} \frac{a_{n+1}}{x a_n} \right) \), atunci:

a) \(L = 0 \), \hspace{1cm} b) \(L = a \), \hspace{1cm} c) \(L = 1 \), \hspace{1cm} d) \(L = \infty \), \hspace{1cm} e) \(L = 2a \).

6) Fie progresia geometrică \(a_1, a_2, a_3, \ldots, a_n \), cu rația \(r \). Valoarea determinantului \(D \):

\[
\begin{vmatrix}
 1 & 1 & 1 & \cdots & 1 \\
 1 & 1 + a_1^2 & 1 & \cdots & 1 \\
 1 & 1 & 1 + a_2^2 & \cdots & 1 \\
 1 & 1 & 1 & \cdots & 1 + a_n^2
\end{vmatrix}, \quad \text{în funcție de } a_1 \text{ și } r \text{ este:}
\]

a) \(D = a_1^2 r^n \)

b) \(D = a_1 r^{n-1} \)

c) \(D = a_1^2 r^n \)

d) \(D = a_1^2 r^{n(n-1)} \)

e) \(D = a_1^2 r^{n(n-1)} \)

7) Se consideră sistemul de ecuații:

\[
\begin{cases}
 x - ay + z = 1 \\
 x - y + z = -1, \quad a \in \mathbb{R}, \quad \text{este simplu nedeterminat pentru:} \\
 ax + a^2 y - z = a^2
\end{cases}
\]

a) \(a = 5; \) \hspace{1cm} b) \(a = -1; \) \hspace{1cm} c) \(a = 2; \) \hspace{1cm} d) \(a = 1; \) \hspace{1cm} e) \(a = -3 \)

8) Se consideră sistemul de ecuații:

\[
\begin{cases}
 mx + y - 2z = 2 \\
 2x + y + 3z = 1, \quad m, n \in \mathbb{R} \\
 (2m - 1)x + 2y + z = n
\end{cases}
\]

Sistemul este incompatibil pentru:

a) \(\begin{cases} m = 1 \\ n \neq 2 \end{cases} \)

b) \(\begin{cases} m = 0 \\ n \neq 1 \end{cases} \)

c) \(\begin{cases} m = -3 \\ n = 2 \end{cases} \)

d) \(\begin{cases} m = 3 \\ n \neq -3 \end{cases} \)

e) \(\begin{cases} m = 3 \\ n \neq 3 \end{cases} \)

Adrian FLOREA
Computers Science and Electrical Engineering, Sibiu
9) \[\text{Fie } x_1, x_2, x_3 \in C \text{ rădăcinile polinomului } P = x^3 + x + 1 \text{ și } d = \begin{vmatrix} x_1 & x_2 & x_3 \\ x_3 & x_1 & x_2 \\ x_2 & x_3 & x_1 \end{vmatrix} \]

Atunci:

\[
\begin{array}{llll}
\text{a)} & d = 0 & \text{b)} & d = 1 \\
\text{c)} & d = -1 & \text{d)} & d = -\frac{1}{2} \\
\text{e)} & d = -\frac{3}{2} \\
\end{array}
\]

10) Mulțimea valorilor parametrului real \(a \), pentru care sistemul

\[
\begin{aligned}
ax + y + z &= 0 \\
x + ay + z &= 0 \\
x + y + az &= 0
\end{aligned}
\]

nu are soluție unică este:

\[
\begin{array}{llll}
\text{a)} & a \in \phi & \text{b)} & a \in \{-2,1\} \\
\text{c)} & a \in R & \text{d)} & a \in (3,4) \\
\text{e)} & a \in \{-1,2\} \\
\end{array}
\]

11) \[\text{Fie } x_1, x_2, x_3 \text{ soluțiile ecuației } x^3 - 3x^2 + 2x + 1 = 0 \text{ și } d = \begin{vmatrix} x_1 & x_2 & x_3 \\ x_3 & x_1 & x_2 \\ x_2 & x_3 & x_1 \end{vmatrix}. \]

Valorea determinantului \(d \) este:

\[
\begin{array}{llll}
\text{a)} & d = 10 & \text{b)} & d = 1 \\
\text{c)} & d = -1 & \text{d)} & d = 0 \\
\text{e)} & d = 3 \\
\end{array}
\]

12) \[\text{Soluția sistemului }
\begin{aligned}
x + y - z &= 1 \\
x - y + z &= 3 \\
x + y + 2z &= 7
\end{aligned}
\]

este:

\[
\begin{array}{llll}
\text{a)} & x = -2, y = 1, z = -2 & \text{b)} & x = 2, y = 1, z = 2 \\
\text{c)} & x = -2, y = -1, z = -2 & \text{d)} & x = -5, y = -1, z = -2 \\
\text{e)} & x = -6, y = -1, z = -2 \\
\end{array}
\]

13) \[\text{Fie } x_1, x_2, x_3 \text{ rădăcinile ecuației } x^3 - mx^2 + 3x - 4 = 0, m \in \mathbb{R}. \]

Valorile parametrului \(m \in \mathbb{R} \) pentru care

\[
\begin{vmatrix} x_1 & x_2 & x_3 \\ x_2 & x_3 & x_1 \\ x_3 & x_1 & x_2 \end{vmatrix}
\]

sunt:

\[
\begin{array}{llll}
\text{a)} & -2\sqrt{2}, 0, 2\sqrt{2} & \text{b)} & -3, 0, 3 \\
\text{c)} & -2\sqrt{3}, 0, 2\sqrt{3} & \text{d)} & -1, 0, 2 \\
\text{e)} & 3, 1, 4 \\
\end{array}
\]

14) \[\text{Să se calculeze determinantul } d = \begin{vmatrix} x_1 & x_2 & x_3 \\ x_2 & x_3 & x_1 \\ x_3 & x_1 & x_2 \end{vmatrix}, \text{știind că } x_1, x_2, x_3 \text{ sunt rădăcinile ecuației:}
\]

\[x^3 - 2x^2 + 2x + 1 = 0. \]

\[
\begin{array}{llll}
\text{a)} & d = 4 & \text{b)} & d = 3 \\
\text{c)} & d = 5 & \text{d)} & d = 1 \\
\text{e)} & d = -1 \\
\end{array}
\]

15) \[\text{Sistemul de ecuații liniare:}
\begin{aligned}
ax + y + z &= 1 \\
3x + ay + z &= 1 \\
3x + y + az &= 1
\end{aligned}
\]

este simplu nedeterminat dacă:

\[
\begin{array}{llll}
\text{A)} & a = 1 & \text{B)} & a \in \{-3,2\} \\
\text{C)} & a = 0 & \text{D)} & a = -1 \\
\text{E)} & a = -2 \\
\end{array}
\]

Adrian FLOREA
Computers Science and Electrical Engineering, Sibiu

1) Fie \(f : D \rightarrow R \), \(f(x) = \frac{x+1}{x^2 - ax - b} \), unde \(a, b \in R \) și \(D \) este domeniul maxim de definiție al funcției \(f \). Dacă graficul lui \(f \) admite asimptota verticală \(x = 1 \) și are extrem local în \(x_0 = 3 \), atunci:
 a) \(a = -1, b = -2 \)
 b) \(a = 8, b = -7 \)
 c) \(a = 1, b = 2 \)
 d) \(a = -2, b = -3 \)
 e) \(a = -5, b = -3 \)

2) Fie funcția \(f : (-\infty, 1] \cup (2, +\infty) \rightarrow R \), \(f(x) = \sqrt{\frac{x^3 - x^2}{x - 2}} \). Care sunt asimptotele funcției?
 a) \(x=2, y=0 \)
 b) \(x=1, y=x \)
 c) \(x=2, y = x + \frac{1}{2}, y = -x - \frac{1}{2} \)
 d) \(x=2, y=x+1 \)
 e) \(y=1, y=x+1 \)

3) Fie \(f : R \rightarrow R \), \(f(x) = \frac{x^2 + ax + b}{x^2 + 2} \), unde \(a, b \in R \). Dacă \(A(-2, \frac{1}{2}) \) este punct de extrem local al lui \(f \), atunci:
 a) \(a = 2, b = 1 \)
 b) \(a = 2, b = 2 \)
 c) \(a = 1, b = 1 \)
 d) \(a = -1, b = 1 \)
 e) \(a = 2, b = 3 \)

4) Ce asimptotă oblică admite graficul funcției \(f : (0, \infty) \rightarrow R \), \(f(x) = \frac{(x+3)(x-1)^2}{x^2} \)?
 a) \(y = x - 1 \)
 b) \(y = x + 3 \)
 c) \(y = x + 2 \)
 d) \(y = x + 1 \)
 e) \(y = 2x + 3 \)

5) Să se determine parametrii reali \(a \) și \(b \) astfel încât funcția: \(f(x) = \frac{ax^2 + 5}{x + b} \) să aibă asimptotă oblică spre +∞ dreapta \(y=x+1 \).
 a) \(a=1, b=1 \)
 b) \(a=1, b=-1 \)
 c) \(a=1, b=0 \)
 d) \(a=-1, b=1 \)
 e) \(a=2, b=1 \)

6) Să se determine \(a \) și \(b \), numere reale, astfel încât dreapta \(y = \frac{1}{4}x + 1 \) sa fie asimptota la graficul funcției \(f : D \rightarrow R \), \(f(x) = \frac{x^3}{(ax+b)^2} \). Să se determine apoi toate asimptotele funcției .

7) Se da funcția \(f:R\rightarrow R \), \(f(x) = \sqrt{|x^2 - 5x + 4|} \)
 a) Să se determine asimptotele funcției \(f \);
 b) Să se determine \(a, b, c \in R \) astfel încât dreptele \(y = 1, x = 2, x = 3 \) să fie asimptote la graficul funcției \(g(x) = \frac{f^2(x)}{ax^2 + bx + c} \)

8) Să se determine parametrul real \(m \), pentru care funcția \(f:R\rightarrow R \), \(f(x) = \ln (1+x^2) - mx \) este crescătoare pe \(R \).

9) Fie \(f(x) = \frac{(x-1)^3}{x^2+x+1} \), \(f:R\rightarrow R \). Se cere :
 a) Să se determine punctele de inflexiune.

Adrian FLOREA
Computers Science and Electrical Engineering, Sibiu
b) Sa se reprezinte grafic funcția.

10) Se consideră funcția \(f(x) = \frac{x-1}{\sqrt{x}} \), \(x \in (0, \infty) \).

 a) Sa se reprezinte grafic

 b) Sa se determine constantele reale \(a, b \) astfel încât funcția \(F(x) = (ax+b)\sqrt{x} \) să verifice condiția \(F'(x) = f(x), x \in (0, \infty) \).

 c) Sa se determine \(x \in (0, \infty) \), astfel încât:

 \[x^2 f''(x) + xf'(x) = \sqrt{x} - 1. \]