ABSTRACT

AL-ZAWAWI, AHMED SAMI. Transparent Control Indepeedce (TCIl). (Under the
direction of Dr. Eric Rotenberg).

Superscalar architectures have been proposed tabite control independence,
reducing the performance penalty of branch misptidis by preserving the work of future
misprediction-independent instructions. The esaéntgoal of exploiting control
independence is to completely decouple future radiption-independent instructions from
deferred misprediction-dependent instructions. €urimplementations fall short of this goal
because they explicitly maintain program order agnonisprediction-independent and
misprediction-dependent instructions. Explicit aggwrhes sacrifice design efficiency and
ultimately performance.

We observe it is sufficient to emulate program or@etential misprediction-dependent
instructions are singled ot priori and their unchanging source values are checkmbinte
These instructions and values are set aside ascavery program”. Checkpointed source
values break the data dependencies with co-mingisgrediction-independent instructions
— now long since gone from the pipeline — achieving essential decoupling objective.
When the mispredicted branch resolves, recoveagliseved by fetching the self-sufficient,
condensed recovery program. Recovery is effectitepsparent to the pipeline, in that
speculative state is not rolled back and recovepears as a jump to code. A coarse-grain
retirement substrate permits the relaxed order é&&tvihe decoupled programs. Transparent

control independence (TCI) yields a highly streamedi pipeline that quickly recycles



resources based on conventional speculation, ewghlilarge window with small cycle-
critical resources, and prevents many mispredistfoom disrupting this large window.

TCI achieves speedups as high as 64% (16% aveaageB8% (22% average) for 4-
issue and 8-issue pipelines, respectively, amon§REC integer benchmarks. Factors that

limit the performance of explicitly ordered apprbas are quantified.
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Chapter 1

Introduction

The performance of microprocessors has shown reahbrkmprovement in the past two
decades. This improvement can be attributed to faedors: faster transistors, through
technology advancements, and higher levels ofunstm-level parallelism (ILP), through
microarchitecture advancements. Technology trean®in strong for the foreseeable future.
However, continuing to increase ILP is jeopardizag control-flow limits and ever-
increasing memory latency. This dissertation isceoned with control-flow limits.

Modern superscalar processors extract ILP fromsarweir of instructions called the
instruction window The larger the instruction window, the more ljk#le processor can find
independent instructions to execute in parallelcaBse branches occur frequently (one
branch every 5-10 instructions), processors mustidpte past many branches to form a
deep instruction window. Unfortunately, a singlarmrh misprediction causes the processor
to discard 100’s of speculative instructions frdra instruction window. Because the penalty
is so high, even a seemingly mild mispredictiore r@.g., 5%-10%) profoundly limits ILP.
Figure 1 shows the utilization gap between real @aerdiect branch prediction across varying
issue widths, using a detailed cycle-level simulatosuperscalar processor with a state-of-
the-art perceptron branch predictor (Jimenez,.eR8D1) and a pipeline depth and memory
hierarchy modeled after the Pentium-4. With perte@nch prediction, a large window is

able to expose sufficient instruction-level pad@&ha in many benchmarks. However, with



real branch prediction, a misprediction rate ofyoll%-10% can significantly limit

performance.
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Figure 1. Harmonic mean IPC with perfect vs. real banch prediction, for
SPEC95/SPEC2k integer benchmarks.

Because of the crucial role that branch predictilays in extracting ILP, it has received
much attention in past decades. Current branchqtoesl are able to achieve high degrees of
accuracy (higher than 90% on most benchmarks). Meweompletely eliminating branch
mispredictions remains an open challenge. Thergfeohniques for tolerating and reducing
the penalty of branch mispredictions are incredgimgportant.

1.1 Branch misprediction tolerance techniques

Figure 2 shows a branch and the instructions foiigwt. The branch can take one of
two control-flow paths. The point where controlvilanerges is called the reconvergent point
(RP). Instructions between the branch and its remx@ent point are control-dependent (CD)
on the branch — whether or not they are fetchee@m#pon the branch outcome. Instructions

after the reconvergent point are control-indepehd€i of the branch and will be fetched

2



regardless of the branch outcome. However, sontieeoC!| instructions are dependent on the
branch outcome indirectly through data depende(regsster or memory) and are labeled as
control-independent data-dependent (CIDD) instamsti For example, in the figure, the
consumer of R5 may get a different version of Rpesheling on which path the branch takes.
All other instructions in the CI region are contimotlependent data-independent (CIDI)
instructions. CIDI instructions are truly indepentef the branch and preserving them is the

key to tolerating branch mispredictions.

branch |=

control-dependent
(CD)

control-independent
data-dependent

control-independent (CIDD)
data-independent J
(CIDI) -~

Figure 2. Example control-flow region.

Branch misprediction tolerance implementations bandivided into four techniques:
multipath, predication, control independence witkipging (CI-skip), and control
independence with speculation (Cl-speculate).

» Multipath: Multipath fetches and executes both paths afeebtanch, duplicating the CI
instructions. The wrong CD and ClI instructions discarded when the branch executes.
* Predication: Predication fetches and executes both CD pathtoupe reconvergent

point. Then, the CI instructions are fetched likeual. However, because the CI



instructions are not duplicated, the execution )T instructions is delayed until the
branch outcome is known.

» ClI-skip: Cl-skip does not predict the branch direction arsiead jumps immediately to
the reconvergent point and fetches the CI instouasti Only when the branch outcome is
known does CI-skip fetch the correct CD instructiohike predication, Cl-skip must
delay CIDD instructions until the branch outcomé&nswn.

» Cl-speculate: Cl-speculate fetches and executes the predictedp@ih and the CI
instructions, like conventional speculation. If ttranch was mispredicted, then, selective
recovery is attempted upon resolving the brancltayoé. Selective recovery requires
fetching and executing the correct CD instructioasd selectively re-executing the
CIDD instructions.

The way CD and CI instructions are handled affétjshe degree of branch misprediction

tolerance and (2) the penalty imposed on corrgutygicted branches.

First thesis claim:
For a processor with realistic resources, the Césplate
technique outperforms other branch mispredictidernce techniques, because it doés

not penalize correctly predicted branches.

Multipath, predication, and CI-skip incur a penalon correctly predicted branches.
Multipath wastes fetch and execution bandwidthfenalternate path of a correctly predicted
branch, including duplicating ClI instructions aftlke reconvergent point. Predication fetches
both CD paths of a correctly predicted branch, ebgrwasting fetch and execution

bandwidth on the alternate CD path, and also neslgl@lelays the execution of the CIDD

4



instructions. Cl-skip needlessly delays the executf correctly predicted CD instructions
and the CIDD instructions that depend on them. ractice, these penalties on correctly
predicted branches partially or fully offset anyngafrom tolerating mispredicted branches.
In some cases, performance is degraded with regpeonventional speculation.

In this dissertation, the four branch mispredictiolerance techniques are qualitatively
and quantitatively compared. The comparison revidalsCl-speculate is the best performer.
1.2 Transparent Control Independence (TCI)

Since Cl-speculate is the best performer, we negud on analyzing Cl-speculate
implementations to understand their limitationss&a# on this analysis, we develop a new

Cl-speculate implementation.

Second thesis claim:
To achieve the full potential of Cl-speculate, thieroarchitecture must
truly decouple misprediction-independent (CIDI)tinstions

from misprediction-dependent (CD & CIDD) instructs

Prior Cl-speculate implementations do not truly aigde CIDI instructions from CD and
CIDD instructions. The root cause is that they &by maintain program order. The
microarchitecture contribution of this dissertatian Transparent Control Independence
(TCI). TCI decouples CIDI instructions from CD a@iDD instructions, by focusing on
repairing program state instead of program ordeZl Tully capitalizes on the work

performed by CIDI instructions, by not wasting baidth on CIDI instructions during



selective branch misprediction recovery and noayleh the freeing of CIDI instructions’
resources.

Explicit order is maintained by prior Cl-speculat@plementations for two main
reasons:

1) Previous implementations evolved from reorder bu{fROB) based designs. The
ROB buffers all instructions in program order topiement in-order retirement.
Hence, the late-fetched correct CD instructionsdrnieebe reordered with respect to
the early-fetched CI instructions.

2) When CIDD instructions re-execute with changed @aldrom the repaired CD
region, they may also need to re-referensehangedralues from CIDI instructions.
Ultimately, this means dependencies need to beteiaed or recreated among co-
mingled CIDI and CIDD instructions.

Implementations that explicitly maintain programder sacrifice design efficiency and
performance.

We propose that it is sufficient to mimic the effeaf program order between
misprediction-independent and misprediction-depehdestructions. First, we depart from
the traditional ROB-based substrate, in favor ofi@e resource-efficient checkpoint-based
substrate (Akkary, et al., 2003) (Cristal, et 2D04) (Hwu, et al., 1987) (Moudgill, et al.,
1993). Leveraging coarse-grain retirement of a kpeinit-based substrate frees us from the
fine-grain ordering constraint imposed by the ROBow, late-fetched correct CD
instructions do not need to be reordered with retsjpeearly-fetched Cl instructions. Second,

CIDD instructions are identified as they are fettlaad their CIDI-supplied source values



are checkpointed, breaking any dependencies on {@EMuctions. The CIDD instructions
along with their checkpointed source values areasé&de in a FIFO re-execution buffer
(RXB) in preparation for recovery. This is the filmplementation that truly decouples the
CIDl instructions from the CIDD instructions.

When a branch is mispredicted, its incorrect CRrutdions are fetched followed by CI
instructions. All instructions — correct and in@at — complete and speculatively release
cycle-critical resources as they drain from theepige (physical registers, issue queue
entries, etc.). When the mispredicted branch resolkecovery is achieved by fetching a self-
sufficient condensed “recovery program”: the carr€® instructions (fetched from the
instruction cache), the CIDD instructions (fetchiedm the RXB), and all input values
needed to launch the correct CD and CIDD instrostithe branch’s checkpoint and the
checkpointed CIDI-supplied source values of CIDBtiactions). Recovery is effectively
transparent to the pipeline, in that speculatiagesis not rolled back and recovery appears as
a jump to code. TCI yields a highly streamlineddtiipe that quickly recycles resources
based on conventional speculation, enabling a lawgelow with small cycle-critical
resources, and prevents many mispredictions framupling this large window.

Figure 3 shows a high-level view of TCI. Dynamistiictions are shown from left to
right in the order in which they are fetched (fetalhe). Correctly fetched and executed
instructions are shown in white and incorrectlclfetd or executed instructions are shown in
gray. Correctly fetched instructions are labelethwieir order in sequential program order
(incorrect CD instructions are labeled with x'stewd). A branch is mispredicted at the

beginning of the fetch timeline. Thus, incorrect @Btructions are fetched first followed by



CIDI and CIDD instructions. The first correctly ¢died instruction is instruction 4.
Sometime later, after fetching instruction 14, thesprediction is finally detected. At this
point, the independent (thanks to input values fribi@ branch’s checkpoint and RXB)
recovery program is fetched. Notice the relaxeckorthe recovery program’s instructions 1,
2, 3,6, 10", and 12’ come after the speculativegpam'’s instruction 14 in the timeline. The
pipeline does not differentiate between the spéoeland recovery programs, as shown. The
speculative state is not rolled back. Instead,rém®very program transparently repairs the

speculative state.
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Figure 3. Transparent Control Independence (TCI).



1.3

Thesis contributions

This thesis makes the following chief contributions

1) Comparison of branch tolerance techniquesGhapter 3):

Comparison of bandwidth overheads of branch migptiesh tolerance techniques
Various techniques (delay slots, multipath, stdyinAmic predication, CI-skip, and
Cl-speculate) are analyzed based on branch covebagiech misprediction penalty
reduction, and overhead incurred by correctly mtedi branches. Quantitative

comparisons are also presented.

2) Analysis of Cl-speculate approachesGhapter 5):

Analysis of overheads of repairing CD instructioriie thesis analyzes issues
associated with removing the wrong CD instructimosn the middle of the window
and inserting the correct CD instructions in theddafe of the window. Processor
resources impacted by CD repair are identified@ogsible solutions are discussed.
Comparison of resource and bandwidth overheadsdpairing CIDD instructions
The thesis analyzes factors that reduce the peafocen of previous Cl-speculate

approaches and quantifies the impact of theseriacto

3) Transparent Control Independence Chapter 4 andChapter 6):

TCI concept and microarchitectur& new approach is proposed that fully decouples
misprediction-independent instructions from mispredn-dependent instructions,
yielding a highly streamlined microarchitecture @&xploiting control independence.
The key insight is checkpointing CIDI-supplied soeivalues of CIDD instructions.

Another important aspect is using a relaxed, cegram retirement substrate.



= |dentifying CIDD instructionsNovel mechanisms are developed for assembling the
CIDD instructions: the control-flow stack (CFS) fdetecting arbitrary and nested
reconvergent points, predicting the influenced stagi set (IRS), poisoning registers
for identifying CIDD instructions, branch-sets fdentifying CIDD loads, etc.

= RXB reconstructionSince CIDD slices of multiple branches are cogted within
the RXB, servicing a branch misprediction may reguepairing CIDD slices of
other branches and selectively removing CIDD ingttams of the resolved branch. A
simple unified solution — identify CIDD instructisnn the recovery program itself, as
was done the first time for the speculative prograanables arbitrary adjustments to
the RXB while preserving its simple FIFO policy.

= Renaming partial programdVe propose a novel technique for renaming thewery

program despite its CIDI gaps.
1.4 Thesis organization

Chapter 2 discusses the experimental method folawehis thesisChapter 3 describes
how branch misprediction tolerance techniques fongtiscusses relevant related work, and
provides a qualitative and quantitative comparisamong the techniquesChapter 4
discusses control independence support mechani€hapter 5 investigates control
independence implementations and challenges, imgudjualitative and quantitative
comparisons with related worlChapter 6 presents the TCI microarchitecture iraijet
including results and additional related work. HyaChapter 7 provides a summary and

future work.
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Chapter 2

Experimental method

2.1 Simulators

| have developed two custom timing simulators. Bade the PISA ISA from the

Simplescalar toolkit (Burger, et al., 1996).
2.1.1 Trace-driven timing simulator

In Chapter 3, | investigate previous branch mispremhctolerance techniques and
evaluate their effectiveness. | use a fast traseedrtiming simulator to generate the results.
The simulator focuses on modeling fetch bandwidtkecution bandwidth, and true
dependencies among instructions in detail, sin@e vthrious techniques tolerate branch
mispredictions with different bandwidth requirenerdnd dependency stalls. Structural
resources are unbounded to assess the potentiall ¢dchniques. The window size is,
however, limited to 8192 instructions.

Instruction fetch is modeled using an ideal tramehe and a perceptron branch predictor
(Jimenez, et al., 2001). Oracle memory disambiguats used. The memory hierarchy
consists of a 64KB L1 data cache, a 64KB L1 ingtomccache, and a 2MB unified L2
cache.

For the baseline, predication, Cl-skip, and Cl-siee, the trace-driven simulator
models fetch and execution bandwidth consumed lmng#path instructions. On the other
hand, in modeling multipath, we opted for an upperformance bound using some oracle

information. First, the simulator oracally idergtithe correct thread and only allows forking
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from this thread. This allows our multipath implertegion to achieve higher performance by
avoiding forking from the incorrect threads, savifgtch and execution bandwidth
accordingly. Second, we only allow instructions nfrathe correct thread to consume
execution bandwidth. However, we do model sharieghf bandwidth among all active
threads. Despite only modeling sharing of fetchdvadth, multipath performs weakly when
compared with the other branch misprediction teleeatechniques being studied.

2.1.2 Detailed execution-driven timing simulator

The different Cl-speculate architectures @thapter 5 and the Transparent Control
Independence architecture (TCl)@hapter 6 are modeled using a detailed executimesar
cycle-level simulator. The simulator fetches andeames both correct and incorrect
instructions as a real processor would, producipgcslative values that affect the
processor’s state, generating bad events suchadselkceptions and so forth. A functional
simulator is run independently and in parallel witte detailed execution-driven timing
simulator to verify its retired outcomes.

Table 1 shows the baseline microarchitecture paenneFor uniform comparisons, the
baseline is TCl with the dynamic reconvergence ipted disabled, which ensures
conventional (full) recovery for all branch mispigns. Thus, the baseline is a checkpoint-

based superscalar processor with aggressive rneggstamation (Akkary, et al., 2003).
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Table 1. Baseline microarchitecture configuration.

L1 | & D caches

64KB, 4-way, 64B line,
LRU, L1hit =1 cycle

L2 unified cache

2MB, 8-way, 64B line,
LRU, L2hit = 10 cycles,
L2miss = 200 cycles

Branch predictor

perceptron (128KB)

Memory dependence prediction

store/branch sets

Physical registers 256
Checkpoints 16
CFS 16 entries
Issue width 40r8
# pipeline stages 20
Issue queue 32 or 64
Load/store queue (LSQ) 512
Re-execution buffer (RXB) 256
Temp buffer (TB) 128

Checkpoint-based processors use cycle-criticalress efficiently. They can form very
large logical windows with small cycle-critical ptigal resources. However, checkpoint-
based processors introduce a penalty when servicisigredicted branches that do not have
checkpoints. In this case, misprediction recovenquires rolling back the processor state to
the closest prior branch checkpoint, squashing goedl instructions between the checkpoint
and the mispredicted branch. On the other handjesdional superscalar processors do not
have this additional penalty.

We compare our checkpoint-based baseline to a atiomal ROB-based superscalar
processor, to justify using the former as a basekigure 4 shows IPCs of the checkpoint-

based superscalar processor (CPR) and a convdndigperscalar processor (SS) with equal

13



resources. Figure 4(a)-(c) give the results ofviddial benchmarks, whereas Figure 4(d)
shows several harmonic mean IPC results. In tipe@xent, CPR is allocated only 16
branch checkpoints, whereas SS is allocated anumaleal number of checkpoints. From the

figures, we observe that CPR outperforms SS oregeer

BCPR OCPR
BSS BSS

IPC
IPC

bzip compress  crafty gap gcc go gzip ijpeg li mcf
(a) (b)
4 4
BCPR OCPR
Bss
@SS 3
O
a

IPC

Harmonic mean - Harmonic mean  Harmonic mean -
parser perl twolf vortex vpr excluding mcf high br. misp. rate

©) (d)

Figure 4. IPC for CPR baseline vs. SS baseline.
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2.2 Benchmarks

We use 11 SPEC2K integer benchmarks and 4 SPE@®&&embenchmarks compiled
with the gcc-based Simplescalar compiler (Burgegle 1996) for the PISA ISA with -O3
optimization. Reference inputs are used.

For all benchmarks, a single simulation point o0 Iillion instructions was selected
using the SimPoint 3.2 toolkit (Sherwood, et a002). In addition, predictors and caches are
warmed up for 10 million instructions prior to $tag the simulation point.

Table 2 shows benchmarks, inputs, and selectedatiom points.

Table 2. Benchmarks.

Benchmarks SimPoint 3.2 (100m
bzip2-program-ref 406
compress95-bigtest-ref 374
crafty-ref 1466
gap-ref 1619
gcc-expr-ref 89
g095-5stone21-ref 138
gzip-graphic-ref 774
ijpeg95-specmun-ref 84
li95-ref 329
mcf-ref 441
parser-ref 2803
perlbmk-diffmail-ref 117
twolf-ref 1075
vortex-two-ref 407
vpr-route-ref 528
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Chapter 3

Branch misprediction tolerance techniques

Branch prediction can only improve the performaota superscalar processor, because
the processor will otherwise stall waiting for theanches to execute. This significant
performance gain is a result of keeping the windail of useful instructions. However,
branch prediction has the disadvantage of wastchfand execution bandwidth when a
misprediction occurs limiting the effective windosize. Branch misprediction tolerance
techniques like branch delay slots (Hennessy,.e1882) (Gross, et al., 1982) (Patterson, et
al., 1981), multipath (Ahuja, et al., 1998) (Hait, al., 1996) (Klauser, et al., 1998) (Uht, et
al., 1995) (Wallace, et al., 1998) (Wallace, et 4099), predication (Allen, et al., 1983)
(Kim, et al., 2006) (Kim, et al., 2005) (Klauset,at., 1998) (Mahlke, et al., 1995) (Smith, et
al., 2006), and control-independence (Al-Zawawglet2007) (Hilton, et al., 2007) (Cher, et
al., 2001) (Chou, et al., 1999) (Gandhi, et alQ80(Rotenberg, et al., 1999) (Rotenberg, et
al., 1999) (Sodani, et al., 1997) have the potemtiareduce the penalty associated with

branch mispredictions.
3.1 Branch delay slots

When pipelined processors were first introducedcessors had to deal with the fact of
not having the outcomes of branches at fetch tirhe. outcome of the branches would only
be known some cycles later when the branch instmgttraveled down the processor
pipeline and executed. This introduced a contrabhéin the pipeline. The simplest remedy

for the control hazard was to insert stalls in pigeline from the time the branch is fetched
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and until the branch outcome is known. This solutiegraded the potential performance of
pipelining since the processor is stalling anddwhg useful work.

Delayed branches were one of the first techniqadslerate branch stalls in pipelined
processors. This technique attempts to overlapchratall cycles with useful instructions by
delaying acting on the outcome of the branch. T &rchitects a fixed number of branch
delay slots that are guaranteed to be fetched mecueed after the branch regardless of its
outcome. A compiler would then try to fill the bdndelay slots with branch-independent
instructions. If the branch delay slots are congheffilled, then the branch stalls are
completely hidden, otherwise, only partial toleramng achieved. This technique evolved on
single-issue in-order processors, where the bratedhpenalty was only a few instructions
(1-3 instructions). In fact, the compiler cannavays fill even a single delay slot (Gross, et
al., 1982).

As an alternative to branch delay slots, brancllipten was later successfully used to
overcome the control hazard in pipelined procesddmeover, branch prediction is capable
of tolerating hundreds of stall cycles in modern-ofdorder processors. Unfortunately,
branch prediction is not always effective in toterg a control hazard. Occasionally, branch
predictions are wrong and the stall cycles are sggpcausing significant performance loss.
In these situations, branch delay slots can plagiéed role in minimizing the impact of a
branch misprediction by reducing the mispredictmenalty by a few instructions. In a
modern processor, a branch misprediction can hayeralty that spans hundreds of

instructions. Filling this many delay slots, statig, is impractical. Hence, branch delay slots
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are not considered a viable solution to toleragsbin mispredictions in the presence of more

effective techniques.
3.2 Multipath

Multipath reduces the penalty of a branch mispteshicby speculatively executing both
paths of a branch. When the branch outcome is kntvenincorrect path is discarded. This
allows multipath to avoid part of the mispredictipanalty, since some instructions on the
correct path have been executed.

Figure 5 presents an example of covering a bransprediction with multipath. After
fetching the branch in Figure 5(a), the processtiows both possible paths. Hence, the
processor avoids the need to predict a single toatbllow. Figure 5(b) shows how both the
wrong CD instructions from path 1 and the correbtf@®m path 2 are fetched and executed
simultaneously. Notice that the CI instructions duplicated and that the CIDD instruction
consuming R5 will execute with different source @mels independently on both paths.
Unfortunately, CIDI instructions will needlesslyesute redundantly on both paths, since we
know that their results will be the same. In Figh(e), the branch outcome is known and the
wrong path is discarded. Resources are reclainosa frath 1 and reallocated toward path 2.

Multipath branch misprediction tolerance comeshat irice of dividing the processor’'s
resources between correct and incorrect executadhsp This facet can also degrade the
performance of correctly predicted branches covegedhultipath needlessly, because not all
resources are allocated to the correctly predigaith as would be the case in a normal
processor. This problem is worsened when coverialgipfe branches with multipath, as the

number of simultaneous paths pursued increaseserpally with the number of covered
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branches. Prior implementations of multipath hag&séned the impact of this problem by
selectively applying multipath based on branch icanfce (Heil, et al., 1996) (Klauser, et al.,

1998) (Wallace, et al., 1998) and other heuriglii®, et al., 1995).
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(a)
R5 - R5 -
branch branch
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\ i \
- R5 -+ R5
(b)

Figure 5. Multipath example.
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3.3 Predication

Predication takes a different approach to brangprediction tolerance. In predication,
all control-dependent instructions are fetched m#igas of the branch outcome and the
execution of the control-independent data-depen@@@D) instructions is delayed until the
branch is resolved. In doing so, predication avdits need to predict covered branches,
hence, the branch mispredictions and their negagiffects are eliminated altogether.
Predication can be performed statically by a coemnpifllen, et al., 1983) (Mahlke, et al.,
1995), or dynamically in the processor (Kim, et 2006) (Kim, et al., 2005) (Klauser, et al.,
1998).

Static predication leverages ISA support and tyjgicean convert 30% of branches
(Tyson, 1994). Static predication’s low coverage ba attributed to:

1) Some control-flow constructs are hard to repredentstatic form after being

predicated (for example: loops).

2) Predication may require in-lining some functionkisTincreases the size of the code

and could be a limiter on the amount of predicatiat can be practically done.

3) Some branches do not have their targets availalglenapile time due to indirect calls

or calls to functions in dynamically linked libras.

4) Some branches may have many possible paths, susWitgh statements, making

predication unreasonable.

On the other hand, dynamic predication can paytiallercome these challenges and

achieves higher branch coverage, by leveraging mimanformation available to the
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processor and the ability of the processor to udvaomplex control-flow dynamically into
simple dynamic hammocks (Kim, et al., 2006) (Klaus¢al., 1998).

Predication avoids the need for predicting a brdmghat a cost. In predication, both CD
paths of the branch are fetched and the execufi@i@D instructions is delayed until the
predicate outcome of the branch is known. This [penaffects all predicted branches
regardless of whether or not the branches woulde hegen correctly predicted or
mispredictions under normal branch prediction. Thadscriminate penalty limits the benefit
of predication and could even degrade performaDgeamic predication, with the help of
branch confidence, reduces this negative effectirpjmg to avoid predicating correctly
predicted branches (Kim, et al., 2006) (Kim, et 2005) (Klauser, et al., 1998).

Figure 6 shows an example of covering a branch nedkgtion with dynamic
predication. When the branch is first fetched igufe 6(a), the processor identifies the
branch’s possible control paths either using brapeddiction or leveraging information
provided by the compiler. In Figure 6(b), the pssm fetches both CD paths, one after
another. Both the correct and incorrect CD instomst are executed. When the reconvergent
point is reached in Figure 6(c), the processorinaast to fetch the Cl instructions. Since the
branch outcome is not known, the processor need$ekay the execution of the CIDD
instructions (guard the CIDD instructions) to aveimhsuming the wrong source operands
(Figure 6(d)). Once the branch outcome is knowRigure 6(e), the processor simply allows
the CIDD to execute with the correct source opesaRdedication typically uses proxy move

instructions to forward the correct register prdots from the CD region to the CI region.

21



In addition, we can optimize performance by stogpkexecution of the wrong CD

instructions once the branch outcome is known estheir results are not needed.
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Figure 6. Dynamic predication example.
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3.4 Control independence

Control independence is a dynamic technique thiarates the penalty of a branch
misprediction by selectively repairing the processetate, meanwhile preserving the work
done by CIDI instructions (Al-Zawawi, et al., 20QRilton, et al., 2007) (Cher, et al., 2001)
(Chou, et al., 1999) (Gandhi, et al., 2004) (Roezgbet al., 1999) (Rotenberg, et al., 1999)
(Sodani, et al., 1997). Two styles of control ineleglence exist based on the way they handle
the CD instructions. The first style of control @mendence skips over the CD instructions of
a branch (the branch is not predicted) and thenwt®e the CIDI instructions while guarding
the execution of the CIDD instructions (CI-skip)hgZ, et al., 2001). When the branch
outcome is known, the correct CD instructions atefed and executed and then the guarded
CIDD instructions are allowed to execute.

In Figure 7, we go through an example of coveritgyaach misprediction with CI-skip.
After the branch is fetched in Figure 7(a), thecessor needs to identify its reconvergent
point. The processor then diverts fetch to the meeogent point in Figure 7(b), avoiding
fetching any CD instructions. Next, in Figure 7(OIDD instructions are identified and
guarded since their source operands may changen \leebranch outcome is known in
Figure 7(d), the processor goes back and fetchesairect CD instructions. Finally, in

Figure 7(e), the guarded CIDD instructions arevedid to execute.
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The second style of control independence specutktes the predicted path of the CD
region and executes all CI instructions (Cl-speegléChou, et al., 1999) (Gandhi, et al.,
2004) (Rotenberg, et al., 1999) (Rotenberg, et1899) (Sodani, et al., 1997). When a
branch misprediction is detected, the wrong CDrutdtons are selectively removed and
replaced by the correct CD instructions, followeyl selectively re-executing the CIDD
instructions. Cl-speculate only has to recover waenisprediction is detected, whereas CI-
skip penalizes a correctly predicted branch (unilleescorrectly predicted branch has no CD
instructions on the correct path and no CIDD irdtams are encountered until the branch
resolves). Cl-speculate benefits from the fact gratliction is correct most of the time and
avoids skipping correct CD instructions needlessBo, Cl-speculate achieves the
performance of speculation by not degrading peréorwe when a branch is correctly
predicted. Moreover, Cl-speculate is able to cdw@nch mispredictions and reduce their
performance penalty.

Figure 8 shows an example of a branch mispredictiovered by Cl-speculate. After the
branch is fetched in Figure 8(a), the processadipt® the outcome of the branch using the
branch predictor. In Figure 8(b), we fetch the @Btiuctions on the predicted path. Once the
reconvergent point is detected in Figure 8(c), @i® region has ended and we continue to
fetch the CI region. Notice that all Cl instructiorare fetched and executed with the
assumption that the prediction was correct. In FEd(d), the branch outcome is known and
we must start to recover from the branch mispraatictWe first squash the wrong CD
instructions and go back to fetch the correct C&ructions from the actual path. Finally, in

Figure 8(d), we re-execute the CIDD instructionsdmplete branch misprediction recovery.
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CIDD re-execution is needed since these instrustioave executed initially with wrong

source operands produced by the wrong CD instmtio
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Figure 8. Control-independence speculate (Cl-speate) example.
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3.5

Qualitative comparison

The goal of branch misprediction tolerance techesgis to achieve the performance of

perfect branch prediction (all branches are cdyqutedicted). When using perfect branch

prediction, the processor is always occupied byembrand useful instructions, and the

processor does not encounter the delays and syallesc associated with branch

mispredictions.

Hence, the success of a branch misprediction toteraechnique depends on three

factors:

1)

2)

3)

Branch misprediction coverage: The percentage aidir mispredictions that can be
covered by a given branch misprediction tolerareghitique dictates the branch
misprediction coverage.

Misprediction penalty: When a branch mispredictien covered with a given
technique, the penalty still exposed to the promess the form of stall cycles or
wasted work (fetch and execution bandwidth) represséhe branch misprediction
penalty of the technique.

Correct prediction penalty: Since branch mispreéains are not known at the time of
fetching the branch, we need to cover branchesusgte®ly in anticipation of a
misprediction. If a correctly predicted branch avered, the tolerating technique may
incur a penalty associated with this coverage. Tpemalty may degrade the
performance of the overall system compared withveational misprediction

recovery which does not incur any penalty for aedty predicted branch.
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The ideal branch misprediction tolerance techniqweuld cover all branch
mispredictions, have no misprediction penalty, bade no penalty for covering a correctly
predicted branch. Achieving this ideal solutiorasschallenging as achieving perfect branch
prediction. We talked briefly about the differemiigions toward the branch misprediction
problem. Branch delay slots, multipath, static/dgi@a predication, and skip/speculate
control independence variants try to improve penfonce by reducing the penalty of branch
mispredictions, however, each technique brings withfferent compromises with respect to
branch misprediction coverage, exposed mispredigienalty, and overhead of covering a
correct prediction.

Multipath has the potential to cover all branch preslictions but with a bandwidth
requirement that grows exponentially with the numioé unresolved branches in the
window. This requirement can be potentially reduasthg branch confidence. However, for
a limited issue machine, multipath is not able thiave reasonable performance despite
good branch coverage. Whenever multipath covensaiach (whether correctly predicted or
not), it takes away from the available processardiadth. So, by definition, multipath
cannot achieve perfect utilization.

On the other hand, predication and control indepeoe reduce the bandwidth
requirements needed by multipath, by avoiding dapilng instructions after the
reconvergent point is reached. This is very impurtas we only waste bandwidth on the CD
instructions. This brings us that much closer tognal of perfect bandwidth utilization.

Static predication has low branch coverage (asudsad in SectioB.3). On the other

hand, dynamic predication and control independeémggementations achieve much higher
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branch coverage than static predication by levamghe ability of the dynamic instruction
window to inline all the code and resolve complextcol-flow into simple sequential traces
of instructions without any loops.

Predication, Cl-skip, and Cl-speculate differ ie thay they deal with the misprediction-
dependent instructions (CD instructions and CIDBtructions) of a covered branch. This
difference dictates the amount of mispredictiongbignthat can be tolerated and the amount
of penalty added to correctly predicted branchegrkdication, both CD paths are fetched
(and possibly executed, depending on the implertienjaand the execution of the CIDD
instructions is delayed (guarded) until the bramelicome is known. In CI-skip, both
fetching the CD instructions and executing the CIDBtructions are delayed until the
branch outcome is known. In Cl-speculate, the jgtedi CD path is fetched and the CIDD
instructions are allowed to execute speculativelgwever, when a branch misprediction is
detected, Cl-speculate replaces the wrong CD icsbns with the correct CD instructions
and re-executes the CIDD instructions to repaiir tstate.

Table 3 compares the different branch recovery isogith respect to branch coverage,
exposed misprediction penalty, and penalty incurbsd covering correctly predicted
branches. In the context of an aggressive suparspabcessor, it is important to choose a
branch misprediction tolerating technique that doesdegrade the performance of the base
system. We noticed that branch delay slots, prédicaand multipath have the potential to
degrade performance when the branch is correctigligied. This penalty can be reduced at
the expense of reduced branch coverage, usingtb@rdfidence. In addition, branch delay

slots do not have enough branch misprediction daolez to cover the full penalty. On the
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other hand, Control independence represents thdlengtound, exhibiting medium branch
coverage (due to branches with no reconvergenttpan branches with very large CD
regions) and low overheads. Within control indemema# styles, we choose to trust the
branch predictor and go with Cl-speculate versusskij that conceptually injects a
misprediction at every skipped branch. Notice, @#elate is the only technique that does
not degrade the performance of a correctly predibr@nch, making it a suitable technique
to complement conventional branch recovery.

Table 3. Comparison of branch misprediction tolerare techniques.

Recovery Branch . - Correct Prediction
Misprediction Penalty

scheme Coverage Penalty
Squash-based |\ 0p | \wrong CD + CIDD + CIDI None
recovery(Base)|
Branch delay : Base misprediction penalty
slots High _ #filled delay slots # empty delay slots

. , Base misprediction penalty Base misprediction penaly
Multipath High X (1-1/#paths) X (1—1/#paths)
Predication - Low Wrong CD + CIDD Wrong CD + CIDD
static
Predication - | 4o jiym Wrong CD + CIDD Wrong CD + CIDD
dynamic
Cl-skip Medium CIDD Correct CD + CIDD
Cl-speculate Medium Wrong CD + CIDD None
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3.6 Quantitative comparison

3.6.1 Effect of branch confidence

Figure 9 shows the harmonic mean IPC results #bissue processor. The four modeled
branch misprediction tolerance techniques (Cl-skipspeculate, dynamic predication, and
multipath) are run with varying confidence thresiso(TH: 4, TH: 8, TH: 16, and TH: 32)
and varying maximum region sizes (R&+RS= 256, and RS= 32). The figure also shows
the results for a processor with squash-based edsggiion recovery (Base), a processor with
perfect branch prediction (Perfect), and the brami$prediction tolerance techniques with
oracle confidence (Oracle Conf).

From Figure 9 (a)-(b), we observe that Perfectexds significant performance gains
over Base and comes very close to the peak uidizatf the processor. Perfect results mark
the performance upper bound for any branch prediictir branch misprediction tolerance
technique.

The upper bound for a specific branch mispredictioterance technique can be
observed by leveraging oracle branch confidencead@rConf). With Oracle Conf, all
branch mispredictions are covered, leading to igedst possible misprediction tolerance,
and all correctly predicted branches are not calepreventing possible performance
degradations.

In Figure 9 (a)-(b), we notice that Cl-skip with&le Conf has very high potential,
coming close to Perfect. This confirms that Cl-skigs very high branch misprediction
tolerance. It is able to hide most of the brancispmediction penalty, exposing only the

guarding of the CIDD instructions (see Table 3). @& other hand, Cl-speculate, dynamic
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predication, and multipath only have medium periange potential with Oracle Conf. This
can be attributed to the fact that all three modeisose a bigger portion of the branch
misprediction penalty when compared to CI-skip. dih three models, the wrong CD
instructions component of the misprediction penadtyexposed (see Table 3). It is also
interesting to see that these three models achrewg close results with oracle branch
confidence, averaged over the benchmarks

Now that we have seen the upper bound of each ipahrusing Oracle Conf, we
investigate the real-world performance using reahbh confidence. A 4096-entry branch
confidence predictor with resetting counters (Jaeab et al., 1996) is used to generate the
results. By varying the confidence threshold fromtal 32, the number of branch
mispredictions covered by the branch mispredictmarance technique is increased at the
cost of covering additional correctly predictedrmiaes. In addition, the maximum branch
region size covered is varied. The region size diranch is an indicator of the cost of
covering the branch with a given technique. Thgdathe branch region, the higher the cost
to cover the branch and the less likely the bemefit

In Figure 9 (a)-(b), Cl-skip shows slight improvemheover Base with real branch
confidence. The performance peaks with a branchidaence threshold of 32 and a
maximum region size of 256. Cl-skip performanceasy far from the potential upper bound
shown by Oracle Conf, because Cl-skip introducesaach misprediction when covering a
correctly predicted branch. The added mispredistiaid a penalty that offsets the savings of

covering true mispredictions and could possiblyrddg performance with respect to Base.
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On the other hand, Cl-speculate shows substargidbimnance gains compared to ClI-
skip. In fact, Cl-speculate performance approa¢hesperformance of Oracle Conf with a
threshold of 32 and without setting a maximum ragi@ze. The reason for this phenomenon
is that correctly predicted branches covered byspg&eulate do not perceive a penalty,
allowing Cl-speculate to cover many branches, rneidigted or not, with low overheads.

As for dynamic predication, it degrades performamacth respect to Base. Dynamic
predication performs best with a threshold of 4n&@wic predication favors only covering
relatively small region sizes below 256. This delgtaon can be attributed to the high cost of
covering branches in a relatively narrow machinethBnultipath and dynamic predication
are very sensitive to branch confidence. To achreasonable results in a narrow machine,
we need a more accurate confidence predictor. Braonfidence is less of an issue in very

wide machines, as the overhead of covering coy@ctdicted branches is reduced.
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Figure 10, Figure 11, Figure 12, Figure 13, andifgédl4 present the IPC results for ClI-

skip,

Cl-speculate, dynamic predication, and mattip for the individual benchmarks.

Several trends can be observed:

1)

2)

3)

4)

5)

6)

7)

Cl-speculate never degrades performance with resp&ase.

Cl-speculate Oracle Conf results are lower thanQh&cle Conf results of the other
technigues in some benchmarks (for example: bampeess, and li). Even so, ClI-
speculate outperforms the other models in thesehvearks.

Cl-skip outperforms Cl-speculate in some benchmgdisexample: gap and twolf).
Cl-skip has the potential to degrade performandé waspect to Base (for example:
bzip, compress, crafty, gcc, li, and perl).

Cl-skip favors different confidence threshold lesvelith different benchmarks. In gap,
for example, it favors a threshold of 32. Howewemerl, it favors a threshold of 4.
Dynamic predication degrades performance moste@tithe in the narrow processor,
but shows some improvement in some benchmarks gfample: compress, gzip,
ijpeg, twolf, and vpr).

Multipath degrades performance on most benchmarttaly sees slight speedups in
vpr. The reason is that multipath is not suitedrfarrow processors and prefers very

wide processors.
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Figure 10. Branch misprediction tolerance technique with varying confidence

thresholds (TH) and maximum branch region size (RS{individual benchmarks).
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Figure 11. Branch misprediction tolerance technique with varying confidence

thresholds (TH) and maximum branch region size (RS{individual benchmarks).
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Figure 12. Branch misprediction tolerance technique with varying confidence

thresholds (TH) and maximum branch region size (RS{individual benchmarks).
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Figure 14. Branch misprediction tolerance technique with varying confidence

thresholds (TH) and maximum branch region size (RS{individual benchmarks).
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3.6.2 Performance potential in wider processors

Figure 15 shows the harmonic mean IPC resultsxainsidels with varying issue widths
(issue width: 4 to 32). The four modeled branchpm&diction tolerance techniques are
shown (ClI-skip, Cl-speculate, dynamic predicatiamd multipath), with oracle branch
confidence on the left and real branch confidencahe right. Each branch misprediction
tolerance technique is run using the branch con@idethreshold (TH) and the maximum
branch region size (RS) that maximizes its perforcea(leveraging the results presented in
Section3.6.1). The figure also shows results for a promessth squash-based misprediction
recovery (Base) and a processor with perfect branetiiction (Perfect).

In Figure 15 (a)-(b), we observe that Perfect adgesignificant improvement over
Base. Perfect achieves close to full utilizationtloé processor bandwidth with low issue
widths (less than 8 issue width). However, as #iseie width is increased, Perfect fails to
achieve the full utilization of the machine duethe limited ILP available to the processor’s
window (the window size is 8192 entries as desdribeSectior?2.1.1).

In Figure 15 (a)-(b), we notice that Cl-skip comts to outperform all branch
misprediction tolerance techniques when applyiragier confidence. Cl-speculate, dynamic
predication, and multipath have similar resultsoasrthe different issue widths with oracle
confidence. In addition, multipath continues towhmprovement potential at issue widths
higher than 24.

When applying real branch confidence to the brangdprediction tolerance techniques,
we observe that Cl-speculate outperforms Cl-skiymadiic predication, and multipath.

Although the performance of multipath has fallenthwreal confidence, it still shows
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performance potential with increased issue widtlgweng it to outperform Cl-skip and

dynamic predication.
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Figure 15. Branch misprediction tolerance techniqus with varying issue width.
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Figure 16, Figure 17, Figure 18, Figure 19, andif@ég20 present the IPC results for ClI-
skip, Cl-speculate, dynamic predication, and mattipfor the individual benchmarks.
Several trends can be observed:

1) Cl-speculate outperforms the other techniques wisamg real confidence, most of the
time.

2) Multipath’s high branch coverage gives it an adsgatwith very wide processors. For
example, in bzip, li, and perl, multipath approacbeovercomes Cl-speculate.

3) Interestingly, Cl-skip, Cl-speculate, and dynamredication outperform Perfect in
vortex with oracle confidence. In addition, Cl-spkate outperforms Perfect with real
confidence and an issue width of 32. Vortex hasvalbranch misprediction rate and
the reason for this advantage is that Cl-skip, g&lesllate, and dynamic predication
allow the processor to open up the window quickantsequential fetch. By taking the
shorter path of a branch region, the advantagexpbsng the future instructions

outweighs the penalty of the branch mispredictiornhis benchmark.
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Chapter 4

Control independence support mechanisms

Covering a branch with control independence hasathentage of reducing the branch
misprediction penalty. However, to successfully eroa branch, we need to identify its
control independent (CI) instructions accuratehisTrequires us to accurately know the
branch’s reconvergent point. In addition, we neetd able to detect and track reconvergent
points in the dynamic instruction stream efficignfinally, we need an accurate account of
all CIDD instructions influenced by the branch aute.

To maximize the performance of our system, we neddverage control independence
on as many branch mispredictions as possible. Hemewachieving high branch
misprediction coverage is difficult and requiresalifey with complex and unstructured
control-flow. For example, some branch mispredidianvolve complex control-flow, such
as nested branches and recursive functions, whashlead to incorrect reconvergent points
or the inability to detect the reconvergent poiftserefore, the recruited mechanisms must
be robust: resilient to all control-flow constructable to recover from incorrect
reconvergence information, and, meanwhile, flexiblgough to adapt to the available

resources and optimize system performance.
4.1 Reconvergent point

A reconvergent point is an instruction that postaduates a branch. This requirement is
necessary to consistently distinguish betweenunstms before and after the reconvergent

point. If a post-dominating point is not selectedime control-flow paths in the branch region
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may miss the reconvergent point. Hence, we carexarage control independence on this
branch misprediction because we cannot distingthisicontrol-dependent from the control-
independent instructions. A branch’s reconvergamtpcan be generated using a compiler,
simple control-flow heuristics, or a hardware potaok.

4.1.1 Compiler

The compiler needs to provide the reconvergenttpafireach branch and convey this
information to the processor. For example, gc&isteng post-dominator analysis can be
used to locate reconvergent points. The generatamhvergent points are conservative since
the compiler considers all possible control-flowthsa between the branch and its
reconvergent point, including rarely traversed path

Once all the reconvergent points have been idedtifa mechanism is required to
convey this information to the processor. One smtuis to encode this information into the
original binary. The ISA would provide optional fqut for the compiler to specify the
immediate reconvergent point of a branch. For @4Astruction encodings or variable-length
instruction encodings, it may be feasible to addbarelative offset to encode the
reconvergent PC of a branch. Otherwise, a new uastm is needed for conveying
reconvergent PCs and would immediately precedeespanding branch instructions. Both
forms could be supported, an offset for most reeogent PCs and an instruction for
reconvergent PCs that exceed the offset. Recomei®€s do not effect the program’s
function (branches with no reconvergent points wadelerage conventional (full) branch
recovery), so branches with reconvergent points ¢aanot be encoded or branches with

unknown reconvergent points can be safely excluded.
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4.1.2 Heuristics

A simple approach for generating reconvergent pamibrmation is to leverage
imprecise heuristics. Heuristics exploit common toalFflow constructs that tend to have
obvious post-dominators. Using heuristics, we camdausing the compiler and modifying
the binary to pass the reconvergent point inforomato the processor. In essence, heuristics
sacrifice branch misprediction coverage for simpliand the ability to cover programs
without the need for recompiling them.
= Return heuristic Functions tend to isolate all control-flow withthem except in
extraordinary circumstances such as long-jump ucitbns and exit conditions.
Hence, the return heuristic builds on the fact thatturn of a function tends to be a
post-dominator for all instructions within the faiom and can act as a valid
reconvergent point (Rotenberg, et al., 1999).

= Loop heuristic In structured code, the loop exit tends to bestqdominating point
for all instructions within the body of the loophd loop exit is often identified by a
backward branch. The loop heuristic is not prea@sesome backward branches may
not correspond to loop exits (Rotenberg, et aR9)9

= Hammock heuristicBy observing the if-then construct in structucsdle, we notice

that the branch’s target points to a post-domigapiaint for all instructions in the if-
then construct body. Hence, the branch’s target lbanused as the branch’s

reconvergent point (Gandhi, et al., 2004) (Rotegbet al., 1999).
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4.1.3 Dynamic reconvergence predictor

The dynamic reconvergence predictor proposed bYinsatt al. (Collins, et al., 2004)
can also be leveraged for providing the reconvergemformation needed for control
independence. The hardware reconvergence predioctobines the advantages of both the
compiler approach and the heuristic approach.dble to achieve high branch misprediction
coverage while avoiding the need to recompile Hrgdted programs. The reconvergence
predictor categorizes branches into four categdrés®d on the location of the reconvergent
point with respect to the branch and the contmlvfleading to it (Collins, et al., 2004).
= Reconverge below maxhis category includes branches with their recogeet
points below them. This is the most common typéminch category. Instructions
below the reconvergent point and at the same eglihdcan never be fetched between
the branch and its reconvergent point. An exampla branch in this category is a
simple forward hammock with no embedded brancheth@mackward branch in a
“for loop”.

= Reconverge above maBranches with their reconvergent points above tleem
considered within this category. Instructions betwéhe reconvergent point and the
branch in the same call depth can only be fetclfted the reconvergent point.

= Rebound reconvergdranches that have their reconvergent points belamn but

are not part of the reconverge below max categogypart of this category. These
branches were not part of the reconverge below m@egory because some
instructions from below the reconvergent pointfatehed between the branch and its

reconvergent point. This can occur because of smm#ol-flow after the branch that

52



pass the reconvergent point and then branch badkwahe reconvergent point. This
situation is commonly associated with switch-camestruct.

= Return reconvergeBranches in this category reach one or more rgtoints (with

the same call depth) before reaching a common wecgaent point.

The reconvergence predictor continuously monitbes retired instruction stream and
tries to detect changes to the current reconveiants. The predictor can monitor a limited
number of branches at any given time. These adiramches are located in the Active
Reconvergence Table (ART). Each monitored branchpmdentially fall within any of the
four branch categories; hence, the predictor maisitéour reconvergent points for each
branch. When the reconvergent point for a giveregmaty is seen, that category is
deactivated. If a retired PC violates the assumptiof an active category, we update its
reconvergent PC with the newly retired instruct®o®C. For example, in the reconverge
below max category, if we see a PC below the reexent point and with the same call
depth before reconverging, we detect that the etwbmvergent point is incorrect and we
update our entry with the new reconvergent poinhew all categories are inactive, the
branch leaves the ART and updates the Reconverdeneckction Table (RPT). The RPT is
indexed by the branch’s PC. If a branch hits inRIRT, the most likely reconvergent point is
selected from the four reconvergence categories.

In this thesis, the predictor is augmented to mte\additional information. Confidence
counters separate accurate from inaccurate predsctiThe confidence counter of a given
branch is incremented whenever an instance of tiwech and its reconvergent point retires

without causing a change to the predictor’s statie retired reconvergent point invalidates
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the previously stored reconvergent points then paate the entry and reset the confidence
counter. In addition, for each branch, the predikieps track of the maximum path length
through the branch’s control-dependent (CD) regampng paths that were traversed. This
information is useful for guiding when to apply tah independence. We select a maximum
CD path length above which it is not worthwhileexxploit control independence due to the

sheer number of incorrect control-dependent instrns.
4.1.4 Performance impact of reconvergent point selection

The distance of the reconvergent point from its'bhaaffects the performance potential
of control independence. The closer the reconvérgemt is to the branch, the less work
that is squashed and wasted (incorrect CD instms}iwhen a branch misprediction occurs
and the more the potential for saving CIDI instiacs.

True reconvergent points, which are valid on altonl-flow paths, may not yield the
highest performance. By identifying that some aolrflow paths are infrequently traversed,
speculative reconvergent points emerge with higieformance potential. For example,
Figure 21 shows a branch with two possible corftovi- paths. However, the right path
encompasses a branch that transfers control outstdmain branch’s two paths. Hence, the
true reconvergent point is located at the targethef infrequent control-flow path. This
control-flow construct is common in branches thantain early loop exits and in error
checking code where the branch ends the programeifror condition occurs.

If we ignore the infrequent control-flow path, tlspeculative reconvergent point is
located at the intersection of the main branch® tentrol-flow paths, which is much closer

to the branch. However, in the case we traversenfrequent control-flow path, we can no

54



longer take advantage of control-independencedoce the penalty of the misprediction on

the main branch and must revert to squash-basedtbraisprediction recovery. The tradeoff

between selecting speculative versus true recoaméngoints must be balanced to achieve
the highest performance gains.

Moreover, considering Cl-skip as a possible segagnmodel changes tradeoffs with
respect to reconvergent point selection. With Gp.skve no longer have to worry about
wasted work done on CD instructions. The CD patdakyed until the branch resolves.
However, the effect of reconvergent point selecbonperformance depends mainly on the
guality of the CI region. A CI region with a highattion of CIDI instructions is desirable.
Since the number of CIDI instructions depends anrthture of the data dependencies and
how much of them are influenced by the productiorthe branch’s CD region, it is difficult
to evaluate if selecting a given reconvergent pougr another is beneficial. Quantifying this
tradeoff is involved and optimizing performanceutes finding points where the number of

CIDI instructions is maximized.

Speculative D
reconvergent point -

Infrequent
control-flow path

Additional CI
instructions

True _
reconvergent point

—_—— - =

Figure 21. Example of true vs. speculative reconvgent points.
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4.2 Control-Flow Stack (CFS)

The previous section discussed ways to associaeoavergent point with each branch.
Using this information, we need a mechanism to adetehen a branch has reconverged,
during instruction fetch. Detecting reconvergentenaltiple concurrent and nested branches
is a challenge that needs to be addressed eflicienachieve high branch coverage with the
nearest reconvergent point (highest performing).

The control-flow stack(CFS) is a hardware mechanism, which enables tohod
accurate detection of reconvergent points in thehfstream.

4.2.1 Single branch

We will address how reconvergence is detectedh®istmplest control-flow construct, a
single branch that does not encompass any braocioadls.

To detect the reconvergence of a single branchaek svith depth one is sufficient.
When a branch is dispatched, its reconvergent Rftisked onto the CFS top-of-stack. The
reconvergent point in the dynamic instruction streia detected by comparing the PCs of
newly dispatched instructions to the reconvergéhiaPthe top-of-stack. If there is a match,
then the branch corresponding to the current tegtaxdk has reconverged and we pop the
top-of-stack entry. This frees the stack to be usedther branches and marks the beginning
of the control-independent instructions. Howevethe branch corresponding to the top-of-
stack completes before reconvergence is detedted,detecting reconvergence is no longer
necessary and we can pop the top-of-stack forduiteinches to utilize it.

Therefore, the CFS top-of-stack can be freed usitingr of two criteria:

1) Popping the top-of-stack when reconvergence isctide
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2) Popping the top-of-stack when the correspondingdiraompletes.
4.2.2 Nested branches

To support multiple nested branches concurrentlg,hechanism employs a multiple-
entry stack. When we see a new branch, we pusadtvergent PC on to the stack making
it the new top-of-stack. Assuming correct reconeatgpoints, we are assured to see the
reconvergent PC in the top-of-stack entry beforerasconvergent PCs in other stack entries.
This is true because all reconvergent points ayedddinition, immediate post-dominating
points. Like in the single branch scenario, thedbgtack is popped when its reconvergent
PC is detected. This exposes the next stack estityeanew top-of-stack and its reconvergent
PC as the new monitoring candidate.

Branches that execute before reconverging no longed their stack entries. Unlike the
single branch scenario, the stack entry being remhoray not always be located at the top of
the stack. Removing stack entries in the middlethef stack may violate normal stack
semantics that only support pushing and popping. aduress this problem, two
implementations are possible:

1) The first solution delays removing entries from thigldle of the stack until popping
is possible. When a branch completes, its corresipgnstack entry is marked as
invalid. If an invalid entry becomes the top-ofedtaor the bottom-of-stack, the
invalid entry is removed using normal popping. Taidution maintains the simple
semantics of the stack at the expense of delah@dréeing of stack entries. There is

no extra cost associated with popping multiple iestiat either end of the stack,
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because this simply involves moving the head drp@inter to the next active entry
in the stack.

2) If immediate stack entry removal is desired, akstagplementation that can collapse
away entries is necessary. This implementation asentomplex but yields higher
utilization of the stack. Invalid entries need notupy stack entries for a long time.

The size of the stack dictates the number of nestadches (case 1 above) or nested

unresolved branches (case 2 above) that can bearehiconcurrently. If the stack is full,

we no longer can detect reconvergence for new hemadBranches with no stack entry are
forced to “give up” their reconvergent points. Hmeg branches with no stack entry can
inherit the reconvergent point of the closest ermassing branch, located on the top-of-
stack. This is correct because the reconvergemtgpoif encompassing branches satisfy the
criteria of being post-dominators for inner brarehgeconvergent point sharing is discussed

in the more detail in the next section.
4.2.3 Reconvergent point sharing and CFS merging

When a branch is dispatched, we normally pushat®mvergent point on the CFS.
However, some branches may not have reconvergemtspdhis can occur either because
the compiler or reconvergence predictor failed tovgle a valid reconvergent point, or
because the branch was forced to give up its remgewnt point because the CFS is full.
These branches can still benefit from control-iretetence by inheriting the encompassing
branch’s reconvergent point. The closest activegsmlved) encompassing branch can be

found on the CFS top-of-stack. The branch simplgerits the encompassing branch’s
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reconvergent point. In addition, some branches fimal/that the CFS top-of-stack already
has the same reconvergent point, anyway.

Some branches may have the same static reconvgrgemnt Programming constructs
such as the “switch” statement contains many brasthat converge at the end of the switch
statement. More generally, branches may share dgrmagonvergent points. There are many
cases in which multiple dynamic branches shares#me reconvergent point. A common
example is the multiple instances of the backwash&h of a loop where they all have the
loop exit as a reconvergent point. Fortunately, @€5 can easily detect cases in which
multiple branches have the same dynamic reconvepgent.

If the newly dispatched branch does not have anmemrgent point, or if its reconvergent
PC matches the reconvergent PC at the CFS tomoissor if the CFS is full, then the new
branch and the branch corresponding to the CF®ftgpack will share the reconvergent
point of the CFS top-of-stack. In this case, the beanch does not push a new entry onto the
CFS, implicitly “merging” with the CFS top-of-stacklence, merged branches share the
same stack entry. When the reconvergent point sporeding to the top-of-stack is
dispatched, we pop the top-of-stack and detectnrargence for all merged branches at
once.

If all merged branches complete before detectimjy thhared reconvergent point, then
the shared CFS entry can be freed. The CFS accsimplithis by maintaining a branch
merge counter for each CFS entry. When a newhhé&tdranch merges with the CFS top-
of-stack, the branch merge counter for that ergtrincremented. When a branch completes,

the corresponding branch merge counter is decraddj@issuming the reconvergent point
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has not been detected yet). If the branch mergateoueaches zero before detecting the

reconvergent point, then the CFS entry can be freed
4.2.4 Recursion

Correct functioning of the CFS is based on the féett, when trying to detect
reconvergence of a specific branch, the first aenwe of its reconvergent PC is the correct
reconvergent point that post-dominates the braHolwever, due to recursion, the CFS may
encounter a reconvergent PC that matches the tstaok mistakenly. This reconvergent PC
is actually a different dynamic instance of theoreergent PC that does not post-dominate

the initiating branch.

Foo(): / Foo'():

10: Br / 10" Br

20: Call Foo()
30: Reconv \ 30": Reconv
40: Return 40" Return

Figure 22. Function “foo” recursively called.
To illustrate this problem, Figure 22 shows a dymasequence of instructions where
function “foo” is called recursively. Instructiomse shown with their PCs. The reconvergent

point of the branch at PC 10 is located at PC B@elfollow the instruction sequence in the
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example initially assuming an empty CFS, the brdiéh Br” will push the reconvergent PC
30 onto the stack. Next, we will encounter the aadtruction which will take us to a new
instance of the “foo” function labeled “foo’”. Theranch “10’: Br” will try to push its
reconvergent PC onto the CFS, only to merge sihe¢dso has 30 as its reconvergent PC.
This is not a problem itself, since the reconvetd®d of the first branch post-dominates the
second branch. Next, we encounter instruction “B&conv” and are forced to pop the stack
prematurely since 30 matches the CFS top-of-stdokvever, this reconvergent point does
not satisfy the criterion of being a post-dominaibthe outer branch “10: Br” and hence is
an incorrect reconvergent point.

If instruction “10: Br” happens to be a branch mespiction, the incorrect reconvergent
point may cause us to corrupt program state dusngvery. As we discard the incorrect CD
path, some incorrect instructions will persist bistake. Instructions between PC 30’ (the
perceived reconvergent PC) and PC 30 should haee Oiscarded. However, because of
premature reconvergence, these instructions remairsing incorrect program behavior.

To address this problem, we make the reconvergtastedefinitive by tracking call
depth in the dispatch stage and including call ke CFS entries. In other words, if the
new branch’s reconvergent PC and call depth méuwelCFS top-of-stack, then the branches
have the same dynamic reconvergent point. Otherwisese reconvergent points are
different although they share the same PC. Thezethie reconvergent point is defined by
both the reconvergent PC and the call depth of mheonvergent instruction. This
distinguishes the two reconvergent PCs and, hgmegents premature reconvergence. From

the previous example, PC 30 will not match PC fduse of the difference in call depth.
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4.2.5 CFS violation detection and recovery

As a consequence of using heuristics or dynamicweae predictors to predict
reconvergent points, an incorrect reconvergent tpomay be predicted. An incorrect
reconvergent point does not post-dominate the brérmelongs to; hence, this branch cannot
be covered by control independence. The incorrecbrnvergent point also affects all
encompassing branches (lower stack entries), byeptmg them from detecting their
reconvergent points. This is a consequence ofrtbertiect reconvergent point tying up its
CFS entry until its branch resolves. This degrgom$ormance, as we lose opportunity to
employ control independence on the branch withritbherrect reconvergent point and for the
encompassing branches below it in the CFS.

It is crucial to detect incorrect reconvergent p®ipromptly to minimize their negative
performance effects. There are three symptomsaairiact reconvergent points that can be
used to identify them.

1) Leaving branch frame: By comparing the CFS toptatis call depth with the
currently dispatched instruction’s call depth, ve@ cetect when we leave the frame of
the reconvergent point. This is detected when ladegdth lower than that of the CFS
top-of-stack has been encountered. Since we dafreeonvergent point to be the pair
of PC and call depth, then a reconvergent point ineisn the same function (frame) as
that of the branch. Otherwise, the call depth partof the reconvergent point will
never be satisfied (except in another instancéeffinction, which is wrong). Since

there is no chance to detect the reconvergent poithis time, it fails the branch post-
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dominating test. So, the concerned CFS entry nusag an incorrect reconvergent
point.

2) Encompassing branch reconvergence: If an encommgasbranch detects its
reconvergent point before the CFS top-of-stack dradoes, then this implies that the
CFS top-of-stack contains either an incorrect rgeogent point or sub-optimal
reconvergent point. In either case, it is far meaduable to use the encompassing
branch’s reconvergent point instead. To detect slasnario, the CFS needs to be
modified. Instead of only comparing the CFS topstafek to newly dispatched
instructions for a match, we need to compare alb Gntries in parallel. This is
feasible for CFSs with relatively few entries, loody have power implications if the
number of entries is large. Fortunately, the CE® $ a function of the maximum
number of unresolved nested branches covered kyotamdependence (which tends
to be small for most benchmarks).

3) Exceeding region size: Leveraging the provided maxn region size of a branch
region, we can detect anomalies. One possible mefwoexceeding the maximum
region size is having an incorrect reconvergenntpohlthough this test does not
conclusively say that a reconvergent point is inett; it does give a strong indication
of problem. To implement this check, we would néeddd a counter to each CFS
entry. Incrementing is done when instructions digpaWwhen any counter exceeds the
maximum region size, we can flag a possible in@meconvergent point.

If the violation is detected on the first pass befservicing a branch misprediction, then

we can repair the CFS. Two repair policies are iptissFirst, we could flush the whole
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stack, forcing all branches on the stack to useadubased branch recovery (since no
reconvergence will be detected). The second apprabigher performing and attempts to
merge the violating entries with the next availab&n-violating entry in the hope that that
entry will reconverge correctly and some contraldpendence benefit will be preserved. If
no entries are available to merge with, then tldating entry is removed and conventional
(full) recovery is used for the concerned branch.

If the violation is detected during branch mispotidn recovery, then we must forego
selective recovery and fall back to conventionall)frecovery (simply do not reconverge

and discard all Cl instructions).
4.2.6 Additional CFS functions

The CFS is an essential mechanism for control ieddence that enables us to cope
with complex control-flow constructs simply. Theefisdness of the CFS can go beyond its
main function of detecting reconvergent points. TOIEES can also be used to propagate
control dependence vectors if desired. The comteplendence vector identifies all branches
that an instruction depends on from a control-fiiandpoint. These vectors are computed by
setting all the bits corresponding to brancheserly on the stack. The control dependence
vectors are useful in some control independencdemmgntations that require selective
squashing of the CD instructions (note that TClsdo®t require this). When the CD
instructions of a given branch need to be squasthedbit corresponding to the branch is
asserted and instructions that have that bit steim vectors are squashed.

Additionally, the CFS can detect looping behaviogeneral through its merging ability.

When branches merge their reconvergent points ®CHS, this is a sign of a possible loop.
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The loop count can be estimated by the numberaafimeergent point merges divided by the
number of unique branch PCs being merged. One galyaof the CFS over using heuristics
to detect loops (backward branches) is that itdetect looping behavior even in the absence
of a traditional looping construct.

Finally, the CFS can be used as a method to oiriieg global history of the branch
predictor. By observing that encompassing brancbhagtomes do not change between the
different dynamic instances for a given control-eegent branch, we can exclude their
history bits from the global history, allowing ftonger history lengths. The reasoning for
this phenomenon is that, for the concerned branchet fetched, encompassing branches
have to take a given control-flow direction, whishconstant. Therefore, the encompassing
branches do not add any information toward the @mut& of the predicted branch. One
concern needs to be addressed for loops that containternal branches, while using this
optimization; in this case, the loop branch woutd see any history bits from previous loop
iterations. This can possibly degrade branch ptieticaccuracy as the predictor would not
be able to identify the loop exit. Note that usihg CFS to optimize global history was
proposed by my colleague, Vimal Reddy.

4.3 Identifying CIDD instructions

Identifying the reconvergent point enables us takntae beginning of the control-
independent (CI) instructions. Furthermore, we néedoe able to distinguish between
control-independent data-independent (CIDI) and trobindependent data-dependent
(CIDD) instructions. CIDD instructions are influesttby the outcome of the branch, as their

outcomes may change depending on the control-flath ptraversed. This indirect
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dependence on the branch is caused either by eeglata dependencies or memory data

dependencies.
4.3.1 Register dependencies (Influenced Register Se})(IRS

In an out-of-order superscalar processor, thergatentially many versions of a given
architectural register at any given time. Instrogs have to execute with the correct physical
register mapping (source names) to ensure corraagrgm execution. In conventional
processors, in-order register renaming ensures itistuctions always get the newest
physical register mappings in the rename map.

Control independence violates in-order registeangng by preserving CI instructions
when a branch misprediction is detected. HenceCthmstructions are renamed before the
correct CD instructions are fetched, making somehefr source names potentially stale.
Physical register mappings are altered during Wramesprediction recovery because of
either squashing the incorrect CD path of the Wramdhich could remove some register
productions, or fetching the correct CD path oflth@nch, which may introduce new register
productions. Hence, Cl instructions must be repaioeensure correct program behavior.

Cl instructions can be broken down into two grop)l and CIDD instructions. CIDI
instructions are not affected by changes in regisppings at all. Their source names stay
the same. On the other hand, CIDD instructions h@we or more of their source names
change during branch misprediction recovery. Initaag instructions dependent on these
root CIDD instructions directly or indirectly arésa considered CIDD instructions.

Since the cause of register mapping changes farGtaD instructions is the insertion

or removal of register productions in the CD regadrthe branch, we must identify register
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productions on all traversed control-flow pathghe CD region. This collection of register
productions is called the Influenced Register §8J. Each bit in the IRS corresponds to a
single architectural register. Hence, the size hidf tRS is bounded by the number of
architectural registers specified by the ISA. Earaple, if the bit corresponding to R5 is set,
then any CI instruction consuming a version of R&f before the reconvergent point,
directly or indirectly through a chain of CIDD ingttions, is considered CIDD. With the
help of the IRS, we have the information necesgargientify CIDD instructions allowing us
the opportunity to service them.

The IRS can be easily generated by a compilerardware predictor.
43.1.1 Generating the IRS using a compiler

The compiler would collect all register productiobgtween the branch and its
reconvergent point statically using basic data-flawalysis. This information is then
conveyed to the processor with a new ISA instructior example, in the PISA ISA, a new
64-bit instruction specifies the IRS. PISA has Bteger (excluding register 0), 16 double-
precision floating-point, and 3 other (HI, LO, FCIGyical registers. 16 bits are used for the
floating-point registers. If any of these are §&C is implied to be in the IRS. 1 bit is used
for both the HI and LO register. Thus, 48 bits elethe IRS. The IRS instruction is inserted

before each branch whose reconvergent PC is specifi
4.3.1.2 Generating the IRS using the reconvergence predicto

Using a hardware predictor to predict the IRS isoafeasible. The IRS is highly
predictable given a predictable reconvergent pogWntearning mechanism is added to the

dynamic reconvergence predictor to collect a brank®S. As the predictor monitors retired
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instructions for reconvergence, it accumulatesdalgregisters being written to after the
branch but before reconvergence is detected. imfle@ registers are also accumulated across
all seen retired paths. This provides a way totiflemall productions for a given branch’s
control-dependent region. The IRS must be accuréte use of confidence ensures
repetition, so that enough different paths areetrsed through a branch’s CD region to yield
a representative IRS.

4.3.1.3 Performance impact of IRS

The performance gain of covering a branch misptedionith control-independence is
directly related to the number of CIDI instructiopseserved. A high percentage of CIDI
instructions in the CI region is desirable and woldave few CIDD instructions needing
recovery, improving performance. The number ofsegs set in the IRS affects the number
of CIDD instructions in the CI region.

If all bits in the IRS are set, then all instrucsoin the CI region would be CIDD
instructions and we would have to repair the whGleregion. This is tantamount to
conventional (full) branch misprediction recove@®n the other hand, if none of the bits in
the IRS are set, then all instructions are CIDtringions (except for violating loads and their
dependents) and the CI region need not be repditednumber of CIDD instructions is also
affected by which registers are set in the IRSwahdt is the nature of the data dependencies
in the targeted CI region. For example, if the lstaainter register (R29 in PISA) is set in the
IRS, then the number of CIDD instructions can begda This is the case because stack
pointer arithmetic forms a long serial dependert@@rcand because the address calculations

for many stack loads and stores depend on it.
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Therefore, a sparse, optimized IRS is favorablevdfuse an overly conservative IRS,
the number of perceived CIDD instructions will iaase and the number of CIDI instructions
will decrease, which will reduce the advantage vawehover conventional (full) branch
recovery. On the other hand, if we use an overljinoptic IRS, there may be many
violations (Sectior.3.1.5) causing frequent downgrades to conventi@cavery.

Ideally, the IRS would be sparse without leadingast coverage. The optimal/actual
IRS would only contain register productions on ftheorrect control-flow path of the
mispredicted branch and register productions orreépaired correct control-flow path. The
actual IRS is completely known only after recovgrinom a branch misprediction at the
point of reconvergence. At that point, the procedsas examined both the correct CD
instructions and incorrect CD instructions. If S is required before recovering from a
branch misprediction, then we must rely on a simd IRS provided by the compiler or the
reconvergence predictor. The compiler and the nemxgence predictor can achieve the
optimal/actual IRS in some situations where thgdted branch only has two possible paths
from the branch to its reconvergent point. Howewelnen branches have more than two
control-flow paths leading to the reconvergent pogonservative IRSs will be produced.
Regions with multiple control-flow paths occur besa of branches with multiple targets
such as jump indirect instructions (JALR and JR)because of internal control-flow
(branches, loops, etc.) that increases the numbemigue paths from the branch to its

reconvergent point.
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4.3.1.4 Optimizing the IRS

Due to the limited number of architectural registeghe compiler, during the register
allocation phase, is forced to spill registers ahtstack. Spilling to the stack is also used to
deal with function calls to avoid caller/callee istgr conflicts. The compiler has set
conventions on how to handle saving registerslawalor correctness across function calls.
Caller-saved registers are registers that are s#dvéte calling function is using these
registers and they are its responsibility. Calleeesl registers are registers that the caller
assumes will be intact after returning from thelezhlfunction and can assume their
correctness. This pact is guaranteed by the chifextion.

Based on the observation that there is typicalljnabchange in callee-saved registers
before and after a subroutine, we can optimize IRf® generation criteria to reduce the
number of registers set in it. Instead of collegtall register productions between a branch
and its reconvergent point, the optimized IRS wautdly collect register productions in its
call depth level between the branch and its recq®ré point (function calls would set their
return registers in the IRS). Hence, any produstiobserved in internal functions (higher
call depths) are omitted from the optimized IRSe Diptimized IRS is not inherently safe, as
some CI instructions may receive the mapping of ohéhe omitted register productions
leading to lost coverage as some CIDD instructiars considered CIDI. To make the
optimized IRS safe, we need to isolate the efféch® omitted registers by short-circuiting
their mappings with their corresponding mappingsibefore the branch. This is guaranteed
to be correct because the callee function preseheesalue of these registers by saving and

restoring them. Leveraging the control-flow stattie branch would checkpoint any register
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mapping not in the optimized IRS. If the branchotess before reconverging, then the CFS
entry will be freed and the IRS is not needed. ndther hand, if the reconvergent point is
reached first, then the top of the CFS loads thedaegister mappings into the rename map.
This allows the CI instructions to short-circuietbmitted IRS productions safely.

4.3.1.5 IRS violation detection and recovery

The compiler or reconvergence predictor provided iRay not match the optimal/actual
IRS. It can be either too conservative or overltimstic. If the IRS has additional bits set, it
is conservative. In this case, control independewdé function correctly, but at an
opportunity cost of identifying some CIDI instrumtis as CIDD. However, if the IRS is too
optimistic, then some CIDD instructions needingaie@fter a branch misprediction will be
neglected (they are incorrectly classified as CIDhis prevents control independence from
successfully repairing a branch misprediction. foately, an inadequate IRS can be
detected, by comparing the actual IRS (observeithdyprocessor) to the predicted IRS.

The actual IRS is composed of register productibgsincorrect and correct CD
instructions. After fetching the incorrect CD insgttions and detecting the reconvergent
point, the predicted IRS is augmented by the adR&lregisters observed thus far. Since no
Cl instructions have been fetched yet, this allawgo repair the predicted IRS preventing
future IRS violations. Later, when a branch mispreoh is detected, recovery includes
fetching the correct CD instructions until the negergent point is reached again. At this
point, the actual IRS is compared with amended ipted IRS. If the actual IRS contains

registers not present in the amended predicted tRS) this is a true IRS violation. To
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recover from an IRS violation, we are forced td tadck to conventional (full) branch

misprediction recovery, discarding all Cl instrocis.
4.3.2 Memory dependencies (load poisoning)

We have seen how a branch misprediction can aBeastructions indirectly through
register dependencies. This effect on CI instrustics further extended through memory
dependencies. Specifically, Cl load instructionsyrba affected by CD store instructions.
For a load to execute correctly, it must receiveriiost recent value of the memory address
it is loading. A branch misprediction can introddeése store instructions on the incorrect
CD path, or delay correct store instructions ondheect CD path, which can influence a ClI
load’s result. Load instructions that are influeshd®y stores in a given branch region are
considered CIDD with respect to that branch. Dursgective branch misprediction
recovery, CIDD loads must be re-executed, like ot@¢DD instructions. For control
independence to be leveraged, it is necessaryGtiald load instructions produce correct
results; otherwise, we will lose control indepenzkertoverage and need to fall back to
conventional (full) recovery. Hence, identifying @D loads through accurate memory
dependence prediction is crucial for good perforcean

Unlike register data dependencies, which are balifgethe number of architectural
registers and can be compactly represented anly @asdicted, memory dependencies are
more dynamic. Fortunately, memory dependenciessameewhat stable (although not as
stable as register dependencies) and relationbeipgeen loads and stores can be accurately

predicted. Traditional memory dependence predicteush as store-sets (Chrysos, et al.,
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1998), have been successful in providing accumedelts in the context of aggressive load

speculation in superscalar processors.
43.2.1 Store/branch set predictor

Traditionally, the store-set predictor can only ldedh stores currently in the window.
However, in the context of control independencehiggctures, fetching of stores may be
delayed until a branch misprediction is serviceda Icontrol independence architecture with
unresolved branch mispredictions, the store-setighiee may decide mistakenly that a given
load is not CIDD and allow it to execute as suchisTis wrong, because selectively
recovering a branch misprediction may introduce esmew stores that were not available in
the window when the store-set predictor made ksligtion. To overcome this problem, the
store-set predictor needs to be modified, makirayvére of potential stores introduced late,
during selective branch misprediction recovery.

Branch mispredictions covered by control indeperdemtroduce holes into the
instruction stream. A CIl load accessing the stetegmedictor before all prior branch
mispredictions have been resolved, will not obséineecomplete instruction stream, leading
to an incorrect memory dependence prediction. $higtion can be identified through the
branches themselves. A low-confidence branch a@[t region represent a possible hole in
the instruction stream, where store instructiony maremoved or inserted. Therefore, low-
confidence branches act like proxies for stores thay be removed or inserted due to
control-flow changes.

In addition to the normal store-to-load memory defmncy (store set) tracked by

memory dependence predictors, the modified predietl need to track dependencies
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between low-confidence branches and loads (braet3h®e store/branch set predictor now
has the capability to detect possible holes innk&uction stream (that typically influence a
given load) and delay the final execution of influed loads until the low-confidence

branches have been resolved.

The CD region, a possible hole in the instructitieaan, can be identified by either the
branch or its reconvergent point. In the store/tinaset predictor, using the reconvergent PC
is more beneficial than using the branch PC faedhneasons:

1) The reconvergent point can represent multiple braa¢CFS merging). This reduces

the number of points needed to be tracked by tedigtor.

2) The reconvergent point is located at the point epasation between the CD
instructions and CI instructions. When CI loads emscthe memory dependence
predictor, the reconvergent point will act as ariearbetween the possibly incorrect
CD instructions and correct Cl instructions.

3) If a branch misprediction is being serviced, thangh may retire before servicing is
completed. By using the reconvergent point, we @névhe load from accessing the
partially repaired CD region.

4.3.2.2 Load violation detection and recovery

As a consequence of load speculation, load vialatimay occur. In the context of
conventional superscalar processors with conveailtiffall) branch misprediction recovery,
load violations are detected by broadcasting th@rem$es of stores as they execute to

younger loads. If a younger load received its vdtoe a store older than the broadcasting
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store or from the cache, and its address matclebrtbadcasted store address, then a load
violation is detected.

In the context of selective branch mispredictiotorery, load violation detection needs
to also address the possibility of store instructiemoval and re-execution. So, in addition to
broadcasting new store addresses to younger laadalso need to broadcast removed store
addresses to younger loads. In control independanctectures, store instructions can
cause load violations by inserting a new addremssowring an old address, or changing an
address. Here is a list of the events causing Vaadtions and the actions required to detect
the violations:

1) Out-of-order execution of a store instruction aelansertion of correct CD store

instruction: broadcast new address.

2) Removing a CD store instruction: broadcast old esklr

3) Re-executing a store instruction: If the addresmges, then broadcast both old and

new addresses. If only the value changes, themgbsbadcast the old address.

Once a load violation has been detected, recogemquired to achieve correct program
behavior. Recovery can be done by either redoih¢hal work after the load violation, or
attempting to selectively repair it. In control emendence architectures, the number of load
violations can increase significantly, due to tlsek in the dynamic instruction stream, when
compared to processors implementing conventional) (branch misprediction recovery.
Fortunately, the store/branch set predictor cantifyeCIDD loads accurately, which reduces

the number of load violations introduced by theesoin the dynamic instruction stream.
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Therefore, redoing all work after a load violatimay be a viable alternative with an accurate

store/branch set predictor.
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Chapter 5

Control independence: Analysis of implementation gsects

and performance factors

Control independence architectures need to accempio tasks to recover from a
branch misprediction successfully. First, they nmegiair the CD region of the mispredicted
branch. This involves discarding incorrect instimies on the mispredicted control-flow path
and replacing them with the correct instructiormfrthe branch’s actual control-flow path.
Second, they must repair the CI region of the magdjted branch. The CI region is
composed of CIDI and CIDD instructions. CIDI ingttions are correct and need not be
repaired. CIDD instructions indirectly depend ore tlhranch outcome through data
dependencies and need to be repaired by correbtmgsource values and then re-executing
them.

This chapter analyzes implementation aspects arfdrpence factors of repairing the
CD region (Sectio®.1) and the CI region (Secti@n?).

5.1 Repairing the CD region

To implement control independence, the processat imel able to repair the CD region.
This involves two steps. The first step is to didctihe incorrect CD instructions from the
middle of the window. This entails reclaiming thesources they hold and making them
available to future instructions. The second steifetch the correct CD instructions and

insert them into the middle of the window. This uigs allocating the newly fetched
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instructions resources, so they can execute. Thesesteps are not fully supported by
traditional superscalar processors.

Instructions can hold many types of resourcesitititide: reorder buffer (ROB) entries,
load/store queue (LSQ) entries, issue queue (I@)esn branch checkpoints, and physical
registers. Traditional processors manage (alloaate reclaim) these resources in different
ways, some compatible with control independencdendthers are not. These resources can
be grouped based on the way they are managed,umdcdered resourceand ordered

resources
5.1.1 Unordered resources

Unordered resourceslo not maintain order between allocated entriedri&ncan be
allocated in any order and reclaimed in any orBencessors usgnordered resourceshen
the order between allocated entries does not lmebdy a specific order and when entries
must be allocated and/or reclaimed out-of-ordee fléxible nature oftinordered resources
makes them compatible with control independenceguirement to insert instructions
(allocate resources) in the middle of the window eamove instructions (reclaim resources)
from the middle of the window. In additioynordered resourcesability to reclaim
resources quickly, out of program order, makes tlsemable to use with performance-
critical resources. Branch checkpoints and isswiglentries are examples of performance-
critical unordered resources

In traditional superscalar processors, instructgetsallocated IQ entries at the dispatch
stage in program order. The IQ entries are recldimat-of-order when their instructions

issue. When a processor detects a branch mispoegisome speculative instructions need
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to be discarded and their resources freed. IQemntrtan be reclaimed from misspeculated
instructions in two ways:

1) Wait for the misspeculated instructions to issua@snal and free their 1Q entries.

2) ldentify the misspeculated instructions in the IQ dree their entries. This can be
accomplished by walking the ROB and using the I@yenumbers stored in it, or by
using control dependence vectors to free the 1Qe=nin bulk (Sectiod.2.6).

Branch checkpoints are allocated to branches tovercfrom possible mispredictions.
Each branch receives a checkpoint at the dispd#gde sn program order. When a branch
executes (out-of-order) and a misprediction is detiected, the branch can safely free its
checkpoint. Branch checkpoints are performancezatitesources and should be freed as
soon as possible. This mechanism stays the sante emimtrol independence and no

modifications are needed.
5.1.2 Ordered resources

Ordered resourcesnaintain a specific order between allocated esntrntries usually
can only be allocated and reclaimed at either drileoordered list. Processors uséered
resourceswhen program order needs to be maintained betweerallocated entries, for
correct functionality and/or performance. An aduhfl advantage of aordered resourcés
its ability to efficiently allocate and reclaim dayuous resources in bulk at either end of the
ordered list. The strict order required bgdered resourcesnakes them incompatible with
control independence’s requirement to insert ircsitbas (allocate resources) in the middle of
the window and remove instructions (reclaim resesydrom the middle of the window. The

ROB, LSQ, and RF are examplesooflered resources
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The ROB requires its entries to be ordered soitlwan retire instructions in the correct
program order. The LSQ requires order to correetiyorce memory data dependencies
between stores and loads in the window. The LSQ @dgquires order to commit stores in
program order to the cache.

The ROB and load/store queues are circular FIFGctires. Instructions are allocated
entries at the end of the FIFOs by incrementingaligointers. Entries are reclaimed in two
ways, depending on if the instructions are coroeanhisspeculated. Correct instructions free
their entries at retirement by incrementing the ch@ainter. Misspeculated instructions
logically after a mispredicted branch free theitries in bulk by moving the tail pointer to
the mispredicted branch’s entry. Notice that allmraand reclamation happen at the head
and tail of the FIFOs. FIFOs do not support arbytiasertion and removal from the middle,
which makes these resources incompatible with obimtdependence in their current form.

To make the ROB and LSQ compatible with controlemehdence, modifications need
to be adopted to enable insertion and removal énntiddle of the window. Four possible
solutions can be adopted:

1) Collapsing/expanding buffer By replacing the simple FIFO with a
collapsing/expanding buffer, we can insert and namimstructions in the middle of
the FIFO. The incorrect CD instructions are remofeadlapsed away) by shifting the
Cl instructions in their place. Inserting the catr€D instructions requires expanding
the buffer in the middle, between the branch amltinstructions, to make space for
the new instructions. The collapsing/expanding i complex and power hungry.

This implementation may also degrade performancaetsying servicing of a branch
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2)

3)

misprediction. The buffer cannot collapse/expangiesnin bulk and may need many
cycles to complete the needed shifting of instangi This delay increases the branch
misprediction penalty.

Linked-list The ROB and the load/store queues can be maregdidked-lists of
instructions, segments, or processing elementse(®etg, et al., 1999), instead of a
circular FIFO, at the cost of extra complexity. §hmplementation is compatible
with arbitrary insertion and removal of entries,king it a good match for control
independence. However, a problem with linked-hsplementations of the ROB and
LSQ is the difficulty in sequencing, allocating,daineeing multiple sequential entries
in parallel. With a FIFO, it is very simple to assesequential elements in parallel
because the indices of a FIFO can be pre-computech fthe head pointer.
Conversely, the linked-list can only sequence @lsirentry at a time because the
index of the next entry is stored with the previemsry and cannot be pre-computed.
The use of multiple next pointers (example: nextfar 1, next-pointer 2, etc.) in
each entry can assist in this effort, at the exparisadded management complexity
and storage requirements. The use of coarse-gréimaat-lists, such as segmented
linked-lists, can also mitigate the problem, atélkpense of internal fragmentation.
Pre-allocation and delayed reclamation of resourc&dess intrusive approach that
allows the use of a FIFO is pre-allocation and ykdiareclamation of resources. This
solution avoids the complexity of linked-list dessgand the latency for expanding a
traditional FIFO. To allow easy insertion of CD tingtions, one can estimate the

maximum number of resources needed by the CD remionthen pre-allocate these
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resources (Cher, et al., 2001). Padding elimindtesneed to expand the ROB and
LSQ when inserting instructions in the middle of thindow. Invalid entries (due to

removing instructions or not using all reservedrieg) are not reclaimed

immediately. Instead, reclamation is delayed untélid entries reach the head of the
ROB or LSQ. Delayed reclamation and inaccurategticeation of resources can

cause internal fragmentation. This approach unilieeg the ROB/LSQ and may

degrade performance.

4) Temporary buffer assisted shiftin@his method achieves the same goal as the
collapsing/expanding buffer but with fewer downsidéfter a branch misprediction
is detected, this method starts copying the Cluiesibns into a temporary buffer in
preparation for moving them to their new locatioAfter the new instructions have
been inserted (the correct CD instructions oveeattie incorrect CD instructions), it
is clear where the CI instructions buffered in tlporary buffer need to be copied.
Delaying copying of CI instructions until the rightcation is known emulates the
need to collapse and expand the buffer many timiéss reduces the hardware
complexity compared to a collapsing/expanding buffeowever, this method shares
one downside with the collapsing/expanding buffethat the shifting process may
take many cycles when compared with a linked-trgilementation of the ROB/LSQ.
This solution is described in more detail in Sat6a3.1.

Alternatively, a ROB-free checkpoint-based architez may be used (Akkary, et al.,

2003) (Cristal, et al., 2004) (Cristal, et al., 2D0The solution substitutes fine-grain

retirement using the ROB with coarse-grain retiremesing checkpoints. By removing the
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ROB, we are only left with the LSQ as ardered resourcen the processor to deal with.
Identifying the synergy between control independéeramnd ROB-free checkpoint-based
processors is a contribution of this thesis arekgored in depth iChapter 6.

Unlike the ROB and LSQ, the register file's (RF)treas (physical registers) are not
allocated and freed in program order, making it patible with control independence.
Unfortunately, conventional processors manage tbeirfg of RF entries using an ordered
free list that is incompatible with control indepemce.

The RF's free list is ordered, giving the RF somedered resourcetraits.
Conventionally, the RF can reclaim physical regstia bulk after a branch misprediction
like the ROB and LSQ. This is achieved by checkiointhe free list head pointer at
branches, and restoring the checkpointed head gvontdrresponding to a mispredicted
branch. This single action bulk-frees the physregisters of all instructions — both CD and
Cl — after the mispredicted branch. Traditional agement of the RF free list is
incompatible with control independence. Simply oesig the free list head pointer to its
checkpointed location at the mispredicted branamissufficient, because physical registers
allocated to CI instructions must not be freedtdad, selectively freeing physical registers
requires walking the incorrect CD instructions teef only their physical registers. In
addition, allocating new physical registers to tberect CD instructions in the middle of the
window will require the order of the free list te bepaired (just like the ROB and LSQ).

To address this issue, we propose using an aleeragister freeing mechanism that does
not rely on an ordered free list. Aggressive regiseclamation does not use an ordered free

list and is based instead on usage counters (Mbuefgal., 1993) (Akkary, et al., 2003). A
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register is freed once all known consumers readrd¢igester’s value and the register is no
longer referenced by any checkpoint or rename rabjet Leveraging aggressive register
reclamation to manage the RF makes it fully congatwith control independence. This
proposed solution is used in TQIHapter 6) and is one of many novel contributiohthis

thesis.
5.2 Repairing the CI region

This section discusses implementation aspects arfdrmance factors of repairing the
Cl region. The CI instructions are already in thendew and need not be re-fetched.
However, some CIDD instructions need to have thegister or memory data dependencies
repaired to reflect the repaired CD region and ta#nCIDD instructions need to be re-

executed.
5.2.1 Repairing the data dependencies of CIDD instrucion

CIDD instructions are either directly data deperidenthe CD region (direct CIDD) or
indirectly data dependent on the CD region (indi@D). Direct CIDD instructions have
potentially stale source register names or staleong dependencies, after repairing the CD
region. Indirect CIDD instructions are data deperden the direct CIDD instructions.
Instructions that depend on indirect CIDD instraos are also indirect CIDD instructions.
Direct and indirect CIDD instructions can be idéat with the help of information provided
by the CFS, IRS, and store/branch set predictaritesl inChapter 4.

Repairing the direct CIDD instructions’ data depamdles involves repairing the register
data dependencies and the memory data dependeMas®ry data dependencies need not

be explicitly repaired. CIDD Loads will repair thenemory data dependencies when they
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are re-executed (they will have access to the megalD store instructions). On the other
hand, register data dependencies need to be alyptiepaired before re-execution can start.
Register data dependencies are repaired by cargettie source register names of direct
CIDD instructions, linking them to their correciopiucers.

Traditional processors with conventional (full) bca misprediction recovery do not
support selectively re-renaming CIDD instructiohattare already in the window. In the
following three sub-sections, we look at three gesnechanismsSeq CJ Proxy, andSeq
CIDD) to achieve this goal and investigate their impaat a traditional processor’s
performance and complexity.

5.2.1.1 Sequencing Cl instructions (Seq ClI)

One way to correct the CIDD instructions’ sourcgister names is to use the same
approach used by conventional (full) branch misjatexh recovery to generate correct data
dependencies. With conventional recovery, all uddtons after the misprediction are
squashed (incorrect CD instructions and CI instons) and the correct instructions are
fetched and renamed (correct CD instructions anth&tuctions). Using this approach with
control independence requires some modificationsalree the CI instructions are not
squashed and need not be re-fetched.

The modified approach would only squash the inabr@D instructions and fetch the
correct CD instructions, but would rename all instions after the mispredicted branch
(correct CD instructions and CI instructions). ®irthe modified approach does not re-fetch
the CI instructions, it needs to sequence throbghQl instructions already buffered in the

processor. Therefore, this approach is referre tgequence C8€q C).
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The Seq Clapproach leverages the existing register renaaye sif the processor to re-
rename all CI instructions after a mispredictednbha In the re-renaming process, direct
CIDD instructions’ source mappings are automatca#paired, reflecting the corrected
control-flow (Rotenberg, et al., 1999) (Chou, et #099).

The advantage dbeq Clis that it uses the processor’s already availaldehanisms to
achieve its goal. However, the process of re-rengrall CI instructions is tantamount to re-
fetching all CI instructions, as implemented by wemtional (full) recovery. This degrades
the potential performance of control independekagthermore Seq Clrequires buffering
all Cl instructions in program order in the proaesso that they can be sequenced in case of
a branch misprediction. This requirement addsm@ered resourceo the processor, similar
to the ROB, which has the potential to further delgr performance and complicate the

design of the control independence implementation.
5.2.1.2 Proxy move instructions (Proxy)

An alternative to re-renaming the CIDD instructioedo use proxy move instructions
(Proxy). Proxy’sgoal is to insulate the CIDD instructions from sminame changes caused
by repairing the CD region (Cher, et al., 2001)r{#a, et al., 2004).

To implement thd’roxy method, the processor needs to insert a proxy nmsgriction
for each production in the CD region at the recogeet point (between the CD instructions
and CI instructions). The destination physical segs of the proxy move instructions are
pinned. This ensures source names of direct CIBBuntions do not change with changing
control-flow. After renaming the correct CD insttionis, only the proxy move instructions

need to be re-renamed to repair their source naiffes.proxy move instructions then
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forward the values from their re-renamed sourcesiglay registers to their pinned destination
physical registers. This assures that CIDD insioast will receive the correct source values
during re-execution.

CD region productions need to be identified to knekich proxy move instructions to
insert at the reconvergent point. This informatiam be provided by the IRS. In addition, to
be able to re-rename the proxy move instructidrey heed to be buffered in the processor.

Proxy has the advantage of eliminating the need to mame CI instructions when
servicing a branch misprediction, however, at tlost cof extra resource pressure and
renaming bandwidth for the added proxy move insions. Extra physical registers, issue
gueue entries, etc. are consumed by the proxy mdfese importantly,Proxy’s resource
overhead and rename overhead affects the perfomadribe system even when all branches
are correctly predicted, forcing us to cover braschselectively for good overall
performance. This problem is not present in theuseqging repair approacheSegg Cland
Seq CIDD.
5.2.1.3 Sequencing CIDD instructions (Seq CIDD)

The two re-renaming techniques discussed previcusle opposing tradeoffs. On the
one hand, th&eq Clapproach has a high re-rename bandwidth requirerbah does not
incur extra resource or execution bandwidth. Onatier hand, th€roxy approach reduces
the required re-rename bandwidth, but requiresaesycle-critical resources and execution
bandwidth for the proxy move instructions. Ideallye would like a solution that minimizes

re-rename bandwidth while not requiring any exyrele-critical resources.
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This thesis introduces a new selective re-renamieghanism. By pre-identifying the
CIDD instructions during dispatch, this techniguéempts to only re-rename the CIDD
instruction stream and hence is called the sequé&ib® (Seq CIDD)approach. This
approach has the potential to conserve re-renamamgwidth compared to thSeq CI
approach.

Like the Seq Clapproach, theSeq CIDD approachleverages the existing register
renaming stage of the processor to repair the somames of the CIDD instructions. After
renaming the correct CD instructionSeq CIDD re-renames the pre-identified CIDD
instructions, repairing their source names. Thecgse of re-renaming only the CIDD
instructions needs special care, as this instmcsipeam contains holes corresponding to
absent CIDI instructions.

Conventional register renaming requires processnstructions in program order to
ensure that correct register linkages are produdedever, CIDD and CIDI instructions are
interleaved, which makes conventional renaming eéqadte for renaming only CIDD
instructions. Figure 23 shows an example of a sezpief instructions from the CI region.
Register R1 depends on the CD region, therefosgructions with “*” are CIDD. When
using theSeq Clrepair mechanism, instruction #4 would receive@&e mapping of P51 for
R5, which is correct. However, renaming only th®Dlinstructions would cause instruction
#4 to receive P50 as a mapping for R5 during resreng, which is incorrect. This is a
consequence of having holes in the CIDD instrucgtmeam. To circumvent this problem,
Seq CIDDrequires identifying CIDI-supplied source registan the example of instruction

#4 the source R5, and avoiding re-renaming of tisesece operands. Source operands not

88



re-renamed would need to reuse their old sourceesa detailed control independence
implementation using th&eq CIDD approach is presented @hapter 6. Note that our
approach goes a step further, supplanting the GUpplied source registers with their actual
values.

#1*: Add R5(P50), R1(P10), R2(P20)

#2*: Add R3(P31), R1(P10), R5(P50)

#3 : Add R5(P51), R4(P40), R6(P60)

#4*: Add R7(P70), R1(P10), R5(P51)

Figure 23. Sequence of instructions from the CI ragn.

In addition to saving re-renaming bandwidt8eq CIDD reduces the instruction
buffering requirement compared 8eq Cl.In Seq C] all instructions need to be buffered
(like in a ROB) in anticipation for a branch misgietion. However, inSeq CIDD,only the
CIDD instructions need to be buffered. This is esgdly important when looking at very
large instruction windows.

5.2.2 Re-executing CIDD instructions

After correcting the CIDD instructions’ source nanall CIDD instructions need to re-
execute to produce correct values. Re-executid@lbD instructions is not fully supported
by conventional processors. CIDD instruction rees®n requires all needed resources
(issue queue entries and physical registers) bea#d (Sectio®.2.2.1), and also requires

that their source operands’ resources (physicadterg) be available (Secti@n2.2.2).
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5.2.2.1 CIDD instructions’ resources

Re-execution (like normal execution) of CIDD ingtions requires that they are
allocated issue queue entries and destination gdilyegisters. One approach to support re-
execution is to hold the resources (issue queusesnand physical registers) originally
allocated to the CIDD instructions when they waerst ffetched and dispatched until the
branch resolvesHopld 1Q). This minimizes changes to the resource managewiethe
processor. However, re-execution may occur manyesyafter the first execution has
occurred. Holding these cycle-critical resourceshias whole period of time can create extra
resource pressure. In turn, this can degrade peaioce compared to conventional
speculation, which allows resources to be reclaimggressively (issue queue entries, and
physical registers when using aggressive regigtelamation) since full recovery squashes
and re-fetches all instructions after a branch reidigtion.

Alternatively, the resources allocated to CIDD iinstions can be released aggressively
according to conventional speculation, and reatetaonly when re-execution is needed
(Drain 1Q). So, after the CIDD instructions execute for fingt time, they are free to release
their resources. These CIDD instructions are beffein an auxiliary re-execution buffer
(RXB) for purposes of re-execution. After the bramisprediction is detected and during
recovery of the CI region, all CISeq C) or only CIDD §eq CIDD instructions are re-
renamed. During re-renaming, CIDD instructions r@elispatched into the issue queue and
reallocated destination physical registers. Thisvigles the CIDD instructions with the

needed resources for re-execution. Therefdrain IQ trades the resource pressureHotd
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IQ for additional re-rename bandwidth needed to oeate resources for the CIDD

instructions.
5.2.2.2 CIDI instructions’ resources

In addition to the resources held by the CIDD usfions themselves, re-execution
requires that all CIDD instructions’ source opeauh@ allocated physical registers. Source
values feeding CIDD instructions, but not produbgdother CIDD instructions, need to be
available for correct execution. These producersy mmeclude CIDI instructions, CD
instructions, or instructions from before the bifandote that latest producers of architectural
registers from before the reconvergent point (C8tructions and instructions from before
the branch) will still have their physical regist@llocated (hence referencable) because their
mappings will be live in the rename map used f@anmeng the CD region. On the other
hand, CIDI instructions are co-mingled with the Olhstructions and need to be dealt with
specially. One solution is to force all CIDI insttions to hold their resources. This solution
makes control independence architectures inefficeanl defeats the purpose of resource-
efficient techniques such as aggressive registéaimeation.

Alternatively, the CIDI instructions can releaseithphysical registers by depositing
their values in the RXB (in program order with respto interleaved CIDD instructions).
Hence, if re-execution of the CIDD instructionsrexjuired, the CIDI instructions can be
reallocated physical registers and their savedirgggin values can be reloaded into the
newly allocated physical registers. One could fertbptimize this solution by allowing the
CIDD instructions to replace their CIDI-suppliedusce register mappings with the actual

checkpointed values from the CIDI instructions. sTlaivoids revisiting CIDI instructions
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altogether, further increasing overall efficiency birtue of (1) not including CIDI
instructions in the RXB, (2) not re-renaming ClDsiructions (re-renaming bandwidth), and
(3) not allocating registers to CIDI instructiongriehg recovery.

5.2.3 Control independence configurations

Different control independence implementations hdWkerent resource and bandwidth
overheads, depending on the way they fulfill thqureements to repair the CD and CI
regions. In this section, we will focus on the periance impact of the different approaches
to repair the CI region, on a common substrate.

For a common substrate, we choose a ROB-free cbetlpased processor with
aggressive register reclamation, for its compatybilvith control independence. First, this
substrate simplifies the repair of the CD region roynimizing the number obrdered
resourcesused in the substrate. The ROB, which traditignaihs a major complication for
control independence implementations, is removdidwimg for arbitrary removal and
insertion of CD instructions. In addition, usinggagssive register reclamation allows the
register file to be fully compatible control indeykence (avoid managing the RF with the
ordered free list)Physical registers are now reclaimed based oneusagnters and not the
ROB.

Second, this substrate is resource-efficient, whidbws it to construct a large window
of instructions with small cycle-critical resourcdsiterestingly, control independence’s
ability to tolerate branch mispredictions, avoidsguashing of Cl instructions, also permits

creating a large window of useful instructions. Eeenthe resource efficiency of the
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checkpointed substrate coupled with the branch miBgtion tolerance of control
independence form a symbiotic relationship.

The only remaining complication in repairing the @gion involves the LSQ. For this
ordered resourcewe will employ the temporary buffer assisted tamgf solution. This
minimizes the effect of repairing the CD regioripaing us to focus on repairing the CI
region.

The CI region repair process involves repairing @BD instructions’ source register
mappings and then re-executing the CIDD instrustitmgenerate correct results. Different
implementations repair CIDD instructions in diffetevays, and with various resource and
bandwidth overheads.

Three source mapping repair mechanisms are studieolky uses proxy move
instructions to insulate the CI instructions froousce name changes, needing only to re-
rename the proxy move instructions after a brandpmadiction.Seq Clre-renames all ClI
instructions.Seq CIDDre-renames only the pre-identified CIDD instruo§oSeq CIDD
requires TCI's mechanisms and is described in detaChapter 6 as part of a complete
implementation.

For re-execution of CIDD instructions, two methodse investigated. The first is
conservative and holds all instructions in the ésgueue to achieve selective re-execution.
This model is labeletHold IQ. This selective re-execution approach is useddoyesprior
control independence architectures designed onrscgdar substrates (Rotenberg, et al.,
1999) (Cher, et al., 2001) (Gandhi, et al., 2004he second selective re-execution substrate

is more aggressive and allows instructions to deainof the issue queue fully or partially.
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This model is labele®rain 1Q. Under this model, selective re-execution is aqa@hed in
different ways based on the source mapping repaahamism. FoProxy,the issue queue is
partially drainedleaving the proxy move instructions and the CIDBtractions in the issue
gueue for re-execution. This is signified Byain 1Q (partial). For Seq Cl,all instructions
(including data they produce) are drained and bedfein a re-execution buffer (RXB).
Selective re-execution is achieved by sequenciegRXB and re-dispatching the CIDD
instructions. SimilarlySeq CIDDalso uses the RXB for selective re-execution. Hesefor
Seq CIDD,only the pre-identified CIDD instructions are karid in the RXB. The RXB-
based models are signified bByain 1Q (all).

Table 4. Resource and bandwidth usage for repairin@IDD instructions.

Hold resogggﬁlelgntll branch Cl resequencing bandwidth
Model Related work
. Issue . .
Registers RXB Re-renaming Re-execution
Queue
Base none none none CIDD + CIDI CIDD + CIDI
a
Proxy all all none proxy CIDD + proxy Eggﬁ:jheit ztl"alzogé% A',)
o , o
= (Rotenberg, et al., 1999
]C__> Seq ClI all all none CIDD + CIDI CIDD (Rotenberg, et al., 1999
Seq CIDD | all all none CIDD CIDD
some CIDI + | CIDD +
o Proxy CIDD + proxy | proxy none proxy CIDD + proxy
=
T (Akkary, et al., 1998),
5 Seq ClI none none all CIDD + CIDI CIDD (Chou. et al., 1999)
Seq CIDD | none none CIDD | CIDD CIDD TCI

aCited for the use of proxy instructions, and rkpger style control independence.

Table 4 compares the resource and bandwidth oweshéa repairing the CIDD
instructions, forBase(conventional recoveryRroxy, Seq C)] andSeq CIDD on bothHold

IQ andDrain 1Q re-execution substrates. TBasemodel always drains instructions out of
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the issue queue (since conventional recovery sgsasiti instructions after a branch
misprediction). In addition, the last column in TaH cites previous implementations from
the literature that share the same CIDD repair mmisim (but not necessarily the base
substrate or the CD repair mechanisms). Resoureediaded into physical register usage
(Reqisters), issue queue entries held (Issue Quamne€) instructions occupying the RXB
(RXB). Bandwidth is divided into re-renaming andeneecution bandwidthDrain 1Q/Seq
CIDD is qualitatively the best or tied for best in gveategory and is the basis for the TCI
implementation discussed @hapter 6 Drain 1Q/Seq CIDDmay re-rename fewer or more
instructions thanProxy, depending on the number of proxy instructions &idDD
instructions being re-renamed. MoreoveBQrain 1Q/Seq CIDD does not incur

resource/bandwidth overheads on correctly predictadches likéroxy.
5.2.4 Results (resource and bandwidth overheads)

Figure 24 (a) shows the harmonic mean of IPCs %ooflthe SPEC integer benchmarks
listed in SectiorR.2, for the seven models. Figure 24 (b) excludagxbmark mcf from the
harmonic mean because the extremely low IPC ofohstures trends. The issue queue size
is varied to understand resource pressure. Thaumesadnefficiency of theHold 1Q re-
execution substrate is a major bottleneck with kmalie queues. In fadBdaseoutperforms
all Hold 1Q models, for issue queues with fewer than 256 en{ii28 entries excluding mcf).
This is because the issue queue limits the ovetiatiow size when all instructions are held
in the issue queue.

Ideally, all instructions should free all cycletmal resources speculatively, allowing for

a bigger window, and CIDD instructions should oridg re-allocated resources when
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selective re-execution is required after a bran@pradiction.Drain 1Q strives for this goal.
However, Proxy falls short of this ideal scenario because prorg &IDD instructions
remain in the issue queue for possible selectivexezution. The remaining issue queue
pressure is evident in Figure 2Rroxy is unique in its sensitivity to issue queue size
compared to other models wibrain 1Q. In fact, for a 16-entry issue quel&rpxy has no
performance advantage over conventional recovBasd let alone the other selective
recovery approaches. On the other hand, a 64-&s#ue queue enabl€soxy to overtake
Seq Cl Overall, Seq CIDD(TCI) performs the best due to its combined badthviand
resource efficiency.

Figure 24 (c) shows the harmonic mean of IPCs femchmarks with high branch
misprediction rates, for all the models. This imga bzip, compress, go, gzip, twolf, and vpr,
all of which have more than 9 branch mispredictigres 1000 instructions. In these
benchmarks, the branch misprediction penalty iegvso there is opportunity for large
improvements with the help of control independentéerefore, we notice that the
improvements oveBase for all Drain 1Q models, have further increased, but the trends

remain the same.
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Figure 24. Performance of different CIDD repair mocels (harmonic mean).

Figure 25, Figure 26, and Figure 27 show the IPlte of the individual benchmarks
for the seven models. Looking at individual benchm®&Cs for theDrain 1Q re-execution
substrate, some interesting phenomena can be aloserv

1) Drain 1Q/Seq Clcan sometimes degrade performance with respe@®ate. For
example, gap, vortex, and vpr sh®sain 1Q/Seq Clperforms worse thaBase most

of the time. This is due to the window size limiat caused by buffering all
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2)

3)

instructions in the RXB (RXB size is 256 instruct®). Drain 1Q/Seq CIDDdoes not
have this limitation since it uses the RXB resousely, only storing CIDD
instructions, making the RXB less of a bottlenemkr(ot at all).

Drain 1Q (partial)/Proxycan sometimes degrade performance with respdgagefor
small issue queues. This can be observed in ba&afiycli, and vpr for a 16-entry issue
queue.

Although Drain 1Q/Seq CIDDoutperformsDrain 1Q (partial)/Proxy most of the time,
we notice that, for the benchmark vprain 1Q (partial)/Proxy slightly outperforms
Drain 1Q/Seq CIDDwith an issue queue size of 256. One possible neigsihhat proxy
move instructions are no longer a resource conatma 256-entry issue queue, and
during re-renaming, there are fewer proxy moverircstons to be re-renamed than the

number of CIDD instructions needing re-renaming.
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Figure 25. Performance of different CIDD repair mockls (individual benchmarks).
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Figure 26. Performance of different CIDD repair mockls (individual benchmarks).
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Figure 27. Performance of different CIDD repair mockls (individual benchmarks).
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Figure 28(a-c) shows the performance sensitivitdiaEin 1Q/Seq ClandDrain 1Q/Seq
CIDD to the RXB size. In addition, thBasemodel is included for referenc84seis not
affected by the change in RXB size). Figure 28taws the harmonic mean IPC of all
benchmarks, Figure 28(b) excludes mcf from the lbarmmean (to be consistent with
previous graphs), and finally Figure 28(c) showshhrmonic mean IPC of benchmarks with
high branch misprediction rates (more than 9 brandpredictions per 1000 instructions).
Seq Clis very sensitive to RXB size since all instrun8oare inserted into the RXB,
therefore, the RXB limits the overall window sidikd a ROB). In contrastSeq CIDDis
much less sensitive to the RXB size since only CiD&ructions are inserted into the RXB,
therefore, the RXB does not limit the overall wimdsize. This trend is observable in all the
figures. In fact,Seq CIDDonly needs an RXB of 64 entries to achieve mosthef

performance potential (on average).
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Figure 29, Figure 30, and Figure 31 show the IPSilte of the individual benchmarks
for Seq ClandSeq CIDD Looking at individual benchmarks, two interestingnds can be
observed. First, for 10 of 15 benchmarkgq CIDDonly needs an RXB with 32 entries.
Second, we notice thabeq Cl degrades performance with respect Base even for
benchmarks with low branch misprediction rateshsas gap and perl. On the other hand,

Seq CIDDdoes not have this problem as it occupies the R&X&8 on branch confidence,

Figure 28. Sensitivity to RXB size.

allowing highly predictable branches’ CIDD instnacts to circumvent the RXB.
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Figure 29. Sensitivity to RXB size (individual benbmarks).
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Figure 30. Sensitivity to RXB size (individual benbmarks).
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Figure 31. Sensitivity to RXB size (individual benemarks).
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Chapter 6

Transparent Control Independence (TCI)

In Chapter 5, we contrasted and quantified the resoand bandwidth overheads of
Proxy, Seq C) andSeq CIDD We found thaSeq CIDDcombines the advantagesfroxy
(bandwidth-efficient) andSeq CI (resource-efficient) and eliminates their disadages,
while fulfilling the CI region re-renaming requiremt. In this chapter, we present a new
microarchitecture that implements tBeq CIDDmodel. By proactively identifying CIDD
instructions in preparation for a branch mispredictwe only re-rename CIDD instructions
and only reallocate resources to CIDD instructihgn recovery is needed.

6.1 High-level overview of TCI microarchitecture

Figure 32 shows our transparent control indeperalémClI) architecture. The shaded
region highlights a resource-streamlined pipelimat taggressively releases resources based
on conventional speculation. Correct and incornestructions alike flow through the
pipeline as fast as they would with conventiona¢cgpation, aggressively freeing issue
gueue entries and physical registers (Akkary, .e2803) (Cristal, et al., 2004) (Moudgill, et
al., 1993) (Srinivasan, et al.,, 2004) on the assiomphat branch predictions are correct.
Instructions drain from the pipeline as soon ay tbemplete — there is no reorder buffer
(ROB) and precise exceptions are achieved via @ducts (Akkary, et al., 2003) (Cristal, et

al., 2004) (Moudagill, et al., 1993) (Srinivasanaét 2004) (Hwu, et al., 1987).
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Figure 32. Transparent control independence (TClarchitecture.

When a branch is encountered in the fetch uniprgslicted CD instructions are fetched
from the instruction cache (I-cache), highlightedrigure 32 with Step-1. These are soon
followed by the branch’s CI instructions, corresgioig to Step-2 in the figure. Both the
predicted CD and CI instructions are renamed whih $peculative rename map and sent
down the pipeline. The branch’s CIDD instructiome &entified in the dispatch stage and
duplicates of these instructions are set aside FHF® buffer, the Selective Re-execution
Buffer (RXB), as shown. When these instructionsiesand read their source operands from
the physical register file, copies of the sourclei@s are also set aside with the corresponding
instructions in the RXB. If, when the branch exesuyita misprediction is detected, control is
temporarily transferred to the correct target & tiranch. Corresponding to Step-3 in the
figure, the branch’s correct CD instructions areted from the I-cache and renamed using
the repair rename map, which is initialized front@responding branch checkpoint thus
ensuring the correct CD instructions have valueshm physical register file to begin
execution with. When the reconvergent point is entered again, control is transferred to

the branch’s CIDD instructions in the RXB, corresgimg to Step-4 in the figure. These are

108



also renamed using the repair rename map to edtalolkages with producer instructions
prior to the reconvergent point. A key point istttiee branch’s CIDD instructions residing in
the RXB do not tie up cycle-critical resourcesessjueue entries and physical registers) and
are allocated resources only when control is texnsél to the RXB, just like instructions that
are dispatched from the I-cache. Another key panthat CIDDs’ source operands that
depend on CIDI instructions cannot be resolvedhieyrépair rename map because the CIDIs’
values were most likely freed from the physicalistay file already, and those that have not
been freed are inaccessible by the repair renanpeamavay; fortunately, the source values
were individually checkpointed previously and arehie RXB with the CIDD instructions.
Loads issue aggressively and are speculative witkvithout branch mispredictions

(Chrysos, et al., 1998). Store-load dependencealsperesolved correctly, as we explain in

Section6.7 and Sectiof.8.
6.2 ldentifying and inserting CIDD instructions into RX B

This section explains how CIDD instructions areniifeed and inserted into the RXB by

the speculative rename map, in a process callestpioig.
6.2.1 Reconvergent point and Influenced Register Sej) (hRslictor

The compiler or a hardware predictor can be useddntify branches’ reconvergent
points. We use the dynamic reconvergence predpmtmposed by Collins et al. (Collins, et
al., 2004). We augment the predictor to providetamtehl information for each branch. First,
the predictor keeps track of the maximum path lerigtough a branch’s control-dependent
(CD) region, among paths that were traversed. iftidcsmation is useful for guiding when to

apply control independence. We select a maximump@ih length above which it is not
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worthwhile to exploit control independence due ke tsheer number of incorrect CD
instructions. Second, we add a learning mechanssooliect a branch’s influenced register
set (IRS). As the predictor monitors retired instiens for reconvergence, it keeps track of
logical registers written to after the branch aedfbbe reconvergence is detected. The use of
confidence ensures repetition, so that enoughrdiitepaths are traversed through a branch’s
CD region to yield a representative IRS.

6.2.2 Control-Flow Stack (CFS)

When a branch is dispatched, we must detect itenkgrgent point among later
instructions as they are dispatched. The reconmergeint marks the beginning of CI
instructions, so it is at this point that we needmark, or “poison”, influenced registers
(indicated by the branch’s IRS) in the speculatergame map.

A novel hardware mechanism called ttantrol-flow stack(CFS) detects reconvergent
points in the dispatch stage. When a checkpointaddh is dispatched, its reconvergent PC
and checkpoint tag (to identify the branch) arehpdsonto the CFS top-of-stack.

The next reconvergent point in the dynamic instancstream is detected by comparing
the PCs of newly dispatched instructions to themgergent PC at the top-of-stack. If there
is a match, then the branch corresponding to thmeecutop-of-stack has reconverged. We
know which branch this is via the checkpoint tagtteg current top-of-stack. Since the
beginning of control-independent instructions hasrbreached, the branch’s IRS is used to
poison influenced registers at this time. Poisonegjsters is explained in the next section.
Finally, the CFS top-of-stack is popped (removee)exposing the next reconvergent point

to search for.
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The CFS can detect cases in which multiple brandmege the same dynamic
reconvergent point. If the reconvergent PC of a Ipesispatched branch matches the
reconvergent PC at the CFS top-of-stack, then éwe branch and the branch corresponding
to the CFS top-of-stack have the same dynamic kezgent point. They do not have the
same dynamic reconvergent point if the call demththe two branches are different, e.qg.,
due to recursion. We make the test definitive lagking call depth in the dispatch stage and
including call depths in CFS entries. If the nevarimh’s reconvergent PC and call depth
match the CFS top-of-stack, then the branches theveame dynamic reconvergent point. In
this case, the new branch does not push a new entioythe CFS, implicitly “merging” with
the CFS top-of-stack.

There are three cases in which a branch is forwecherit the reconvergent point of its
encompassing branch region: if the branch doeshawvé a predicted reconvergent PC, if
there are no free checkpoints, or if the branchcosfidently predicted. The branch
corresponding to the CFS top-of-stack is the clbsesompassing branch. Thus, the new
branch inherits the reconvergent point of its engassing branch simply by not pushing
onto the CFS and instead merging as explained above

The CFS only needs as many entries as there aokpiiats (16 entries our default
configuration). CFS entries of branches that resddefore they reconverge are collapsed

away (since they are not popped).
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6.2.3 Poison vectors

After a branch’s CD region is fetched and its remygent point is detected by the CFS,
we are ready to use the branch’s IRS to poisonstegi and thereby identify CIDD
instructions. Each influenced register specifietheIRS must be poisoned.

We provide a 16-bipoison vectomer entry in the speculative rename map. A logical
register is poisoned if one or more bits are setsipoison vector. Moreover, which bits are
set indicates which branches a logical registanfisenced by. A checkpointed branch is
identified by its checkpoint tag. A non-checkpothteranch is identified by the checkpoint
tag of the branch from which it inherited its regergent point (discussed in Sectié2.2).
Since we use 16 checkpoints in the default confitjoin, a poison vector has 16 bits in the
default configuration.

When a branch reconverges, the poison vector df edltienced register, specified by
the IRS, is updated in the speculative rename ingparticular, the poison bit corresponding
to the branch’s checkpoint tag is set.

CIDD instructions can now be identified during remag. When an instruction’s logical
source registers are renamed, the correspondirgpmpaiectors are ORed together. If the
ORed vector has any bits set, the instruction BOCWith respect to one or more branches.
Also, the ORed vector overwrites the poison veofathe logical destination register, in the
speculative rename map. This propagates poisomsstar identifying indirect CIDD

instructions.
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When a checkpoint is freed, the corresponding polsbis cleared in all poison vectors.
Given that all branches associated with the chdokpare now resolved, no future
instructions should be considered CIDD with respet¢hese branches.

Only the speculative rename map, repair rename mag, checkpoints have poison
vectors. Poison vectors in the repair rename mapcaeckpoints are discussed in Section
6.3.

6.2.4 Inserting CIDD instructions into the RXB

CIDD instructions are inserted into the RXB in pram order at the dispatch stage.
When a CIDD instruction issues and reads its souat@es from the physical register file, it
replaces its source mappings in its entry in thé&Rwith the source values (a bit is set within
its entry in the RXB to signify that source vallese replaced source mappings).

6.3 Misprediction recovery

When a misprediction is detected, the fetch umiperarily redirects fetching to the
correct target of the mispredicted branch. Cor@€Ex instructions are fetched from the
instruction cache and renamed using the repaimmenaap initialized from a checkpoint at
the branch. The repair rename map, like the spieeileename map, has its own CFS to
detect the reconvergent point again thus detedtiagend of the correct CD instructions (its
CFS also identifies new nested branch regions)hi&tpoint, the branch’s CIDD instructions
are fetched from the RXB, re-renamed using theirepaame map, and re-injected into the
pipeline. Finally, the repair rename map is useiXxaip the speculative rename map and

checkpoints.
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6.3.1 Reconstructing the RXB

The RXB contains CIDD instructions with respectéaib unresolved branches. This
means the RXB must be reconstructed when recovédrorg a branch misprediction, as
follows.

= Case AThere may be instructions from the branch’s inrecrCD path in the RXB,

that were thought to be CIDD with respect to ofwe@or branches. These have to be
removed from the middle of the RXB.

= Case B New instructions from the correct CD path may@®D with respect to

other prior branches. These have to be insertedhet middle of the RXB.

= Case Clnstructions in the RXB that are only CIDD withspect to the branch being

serviced should be selectively removed from the RXBice they will not be
revisited again. Instructions in the RXB that at®D with respect to other branches
(whether or not they are also CIDD with respecth current branch) must remain
in the RXB. Note that these two types of instrutsi@re co-mingled in the RXB.

There is only one solution and it is simple, beeaiisis analogous to initial CIDD
identification and insertion into the RXB describiedthe previous section. The recovery
program for the current branch is comprised of togrect CD instructions from the
instruction cache and all instructions in the RXa&jitally after the resolved branch’s
reconvergent point. (The recovery program is noeffisient as it could be because it has
CIDD instructions of other branches that are nsobaCIDD with respect to the current
branch.)Poisoning of the recovery program via the repainame map can once again

construct the RXB content&s a preliminary step, the RXB tail pointer iswved back to the
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branch (even though the branch may not be in th®& RMKysically, the branch knows its
logical position in the RXB). This naturally takeare of any incorrect CD instructions in the
RXB since they will get overwritten by the adjustad pointer ¢ase A. Then, poisoning the
recovery program using the repair rename map wdturally (1) insert new CIDD
instructions with respect to prior branches frombagthe correct CD instructionsase B,
and (2) insert old CIDD instructions only if theyeaCIDD with respect to remaining
unresolved branchesdse G.

Since CIDD instructions are concurrently fetchednfrthe RXB (while fetching the
recovery program) and inserted into the RXB (wlibastructing a new recovery program),
we need a mechanism to prevent overwriting CIDDrutsions in the RXB before they are
fetched. We set up a pre-read pointer into the RK8& points to the first Cl instruction with
respect to the resolved branch. Since we movedaih@ointer to the branch, the pre-read
pointer is logically after the tail pointer. Theepread pointer is where fetching of CIDD
instructions is supposed to begin. If we wait utitéd correct CD path is fetched, some of the
CIDD instructions beginning at the pre-read poimtauld get clobbered by the advancing tail
pointer. Therefore, using the pre-read pointerbegin pre-reading CIDD instructions from
the RXB right away so that they cannot get clobbefdey are transferred to a Temp Buffer,
from which fetching of CIDD instructions will evamdlly begin (after the correct CD
instructions are fetched from the instruction cache

Figure 33 shows a detailed RXB reconstruction examjith two branches, B1 and B2,
and respective reconvergent points R1 and R2. bbgiasitions of B1/R1 and B2/R2 with

respect to RXB instructions are indicated with windlack arrows. RXB instructions are
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labeled with their position # in the dynamic instian stream. Noncontiguous numbers
merely highlight that CIDD instructions are nondguabus. Instruction x is not numbered
because it is an incorrect CD instruction of midgimeed branch B2. Furthermore,
instructions are marked with either a rectangleal: rectangles are CIDD with respect to
B1, ovals are CIDD with respect to B2, rectanglest@re CIDD with respect to both B1 and
B2. Below we step through each of the frames (f)-(g

(a) Frame (a) shows the initial state of the RXB. B% ha CD instructions in the RXB
since there are no branches prior to it. B1 has @DD instructions after R1: 9, x,
16, 20. B2 has one (incorrect) CD instruction, nsttuction x is not in the RXB
because of B2 but rather because it is CIDD widpeet to B1. B2 has two CIDD
instructions after R2: 18, 20.

(b) In frame (b), mispredicted branch B2 is detectedistng the RXB tail to rollback to
just after B2 (instruction x), and the RXB pre-rgaainter to initiate at the first CIDD
instruction past B2’'s reconvergent point R2 (instian 16).

(c) In frame (c), new instructions 11 and 12 — corf@btinstructions with respect to B2
— are fetched from the instruction cache (I1$) argpatched for the first time to the
issue queue (To IQ). Moreover, instruction 12 seied into the RXB because it is
CIDD with respect to B1. Instruction 12 is insertadthe RXB tail (which then
advances) thereby replacing instruction x. Noteo dlsat pre-reading has begun:
instruction 16 is transferred to the Temp Buffertlat it is not clobbered by B2’s

incoming correct CD instructions.
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(d) Similarly, in frame (d), we continue fetching andmhtching the remainder of B2's
correct CD instructions (13 and 14). Both 13 anadetdispatched to the issue queue
but only 14 is inserted into the RXB, since 14 IBD with respect to B1. Meanwhile
we continue pre-reading instructions (18) into Teenp Buffer.

(e) In frame (e), no more instructions are fetched ftbm|1$ because B2's reconvergent
point R2 has been reached from the correct CD pafh.begin reinjecting and/or
recirculating CIDD instructions from the Temp Buffé&rame (e) shows instruction
16 leaving the Temp Buffer only to be recirculateack to the RXB (CIDD on
unresolved B1). It is not reinjected into the isgueue because it is not CIDD on B2
(the mispredicted branch).

(f) However, instruction 18 in frame (f) is reinjectedo the issue queue (CIDD on
resolved B2) and not recirculated back to the RKBesit is not CIDD on B1.

(9) Finally, in frame (g), instruction 20 is both resnjed into the issue queue and
recirculated to the RXB from the Temp Buffer, bexmuit is CIDD on both B1 and

B2. Since the Temp Buffer is empty, we are doneicieg B2.
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Figure 33. RXB reconstruction example.
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6.3.2 Poisoning via repair rename map

The repair rename map’s poison vectors are irggdlifrom the mispredicted branch’s
checkpoint. While fetching the correct CD instroas from the instruction cache and CIDD
instructions from the RXB, the poison vectors asnaged the same way as described for the
speculative rename map (Sect®g.3), except for a subtle modification. The paisectors
of logical registers that would have been updatgdCiDI instructions, simply are not,
because they are not observed by the repair remaape These logical registers represent
“holes” in the repair rename map and their pois@cters cannot be referenced by an
instruction’s source registers. Fortunately, we vkntwo things: (1) the poison vector
generated by a CIDI instruction is all 0’'s becaitsés not CIDD with respect to any
unresolved branch, and (2) a CIDI instructismbservednce(and only once) in either the
speculative rename map (CIDI immediately) or repaitame map (CIDI eventually). So,
when a source register of a CIDD instruction refess a CIDI production for the first and
only time (signaled by an all-O poison vector inetlmename map), a sticky bit
(“CIDI_supplied”) associated with the source regish the RXB is set to indicate that the
source register's poison vector is by definitioh @d. Once CIDI_supplied=1, in future
passes, an all-0 poison vector is used insteaéfefancing an absent poison vector in the
repair rename map. Table 5 summarizes poisonimg ke repair rename map.

The outcome of poisoning by the repair rename maicates what to do with each
instruction. For correct CD instructions from tmstruction cache, the choices are: insert or
do not insert into the RXB. For CIDD instructiomerh the RXB, the choices are: reinject

only, insert (i.e., recirculate) only, reinject amdert, or discard. An instruction is inserted
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into the RXB if poisoning indicates that it is CIDMth respect to any unresolved branches.
An instruction is reinjected into the pipeline ibiponing indicates that it is CIDD with
respect to the mispredicted branch being serviced.

Table 5. Poisoning using the repair rename map.

Source operand type

CIDI CIDD

Use an all-0 | Read poison vector frof
poison vector repair rename map

=)

Action

6.3.3 Reinjecting CIDD instructions

Only CIDD instructions from the RXB that are CIDOtlwrespect to the branch being
serviced are reinjected into the pipeline. Thegerasrenamed to bind physical registers and
thereby facilitate re-execution.

CIDI instructions are absent from re-renaming, psthey were absent from poisoning.
Now, additionally, CIDD instructions from the RXBdt are not reinjected are also absent
from re-renaming. The latter instructions are ClIRidh respect to other branches but not
with respect to the branch being serviced. Theytantamount to CIDI instructions with
respect to the branch being serviced (“implicit’DClinstructions), and need not be re-
executed. As such, they are not re-allocated stoaag do not participate in re-renaming.

When re-renaming a source register of a reinje@#dD instruction, we need to
determine if it depends on an explicit or impli€itDI instruction (the two cases outlined
above) versus a CD or reinjected CIDD instructidnt depends on an explicit or implicit

CIDI instruction, then the source value (if avalgbor source mapping from the RXB is
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used in lieu of re-renaming, because the repaamenmap has a stale name. Otherwise, the
correct mapping is obtained from the repair renama@. Table 6 summarizes re-renaming a
source operand using the repair rename map.

Table 6. Renaming using the repair rename map.

Source operand type

- CIDD but
Explicitly CIDI implicitly CIDI CIDD
Acti Read value or Read value or | Read mapping frony
ction ) . .
mapping from RXB| mapping from RXB| repair rename may

The source register depends on an explicit CIDirusion if its CIDI_supplied bit in
the RXB is set. The source register depends onmguticit CIDI instruction if its poison
vector in the repair rename map does not haveufrerd branch’s bit set. Note, it is safe to
reference the poison vector because all CIDD instns in the RXB undergo poisoning. It
is only unsafe to reference the poison vector endase of explicit CIDI instructions, which
is why the CIDI_supplied bit is checked first.

The reinjected CIDD instruction is allocated a nplaysical destination register and
updates the repair rename map accordingly.

If a CIDD instruction is both inserted (i.e., rexifated) into the RXB and reinjected into
the pipeline, its source registers may be updatedhé RXB, analogous to what was
described in Sectiof.2.4. Specifically, when it redispatches, a rearead source register

updates the corresponding source mapping in the. RM&en it reissues, it reads values from
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the physical register file for source registerd thd not reuse values from the RXB. These

new values replace corresponding source mappinteiRXB.
6.3.4 Merging repair/speculative rename maps

When RXB reconstruction is completed, the repamarnee map is logically at the same
point in the dynamic instruction stream as the gla¢ive rename map. Some mappings in
the speculative rename map have to be repaired tisenrepair rename map. Specifically,
any speculative mapping whose poison vector hadtéech’s bit set may be incorrect (it
may have changed due to the control-flow adjustinéle simply copy the corresponding
mapping from the repair rename map to the speeelagname map. All poison vectors in
the repair rename map are copied.

Checkpoint maps are repaired the same way, asettarrrename map resequences
through the RXB and reaches checkpoints along the w

6.4 Writing source values into the RXB

When a CIDD instruction leaves the issue queueraads its source values from the
physical register file (or from the bypass netwprkheeds to access the RXB entry assigned
to it to replace the stored source mappings wighattual source values. However, a CIDD
instruction’s RXB entry may change its locationpast of reconstructing the RXB during
branch misprediction recovery. The RXB entry maside in the Temp Buffer temporarily,
only to be reinserted into a different RXB entrytorbe discarded from the RXB altogether
(no longer CIDD on any branch). In either case,ithlight CIDD instructions still in the
pipeline have stale RXB entry numbers (RXB tagsit theed to be repaired, to prevent

corrupting the RXB contents by way of updating wWreng RXB entries.
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Furthermore, multiple instances of the same CID8&ruction may be in the pipeline
concurrently, waiting for their opportunity to ugdahe shared RXB entry. This situation
may arise because an original dispatched instaaseniot issued by the time a branch
misprediction starts servicing or because an instm that is CIDD on multiple branches is
injected multiple times due to servicing multipleabch mispredictions independently. In
either case, only the last dispatched instancegifen CIDD instruction needs to update the
RXB entry with source values, since the last instamas the most up-to-date source
mappings that reflect the current state of the gssor.

To overcome these challenges, a solution needs implemented that can fulfill two
requirements:

1) Enable valid CIDD instructions in the pipeline txass their RXB entries even in the
presence of RXB reconstruction (RXB-entry recirtiola).

2) Invalidate the RXB tags of some CIDD instructionstine pipeline, in reaction to
freeing some RXB entries or reinjecting duplicatpies of the CIDD instructions
into the pipeline.

We propose using an indirection table (IT) in cowjiion with the RXB to fulfill both of
these requirements. The indirection table conttiesactual RXB/TB mapping, a valid bit
indicating if the mapping is valid or not, and anfeBuffer bit indicating if the RXB entry is
in the Temp Buffer. As CIDD instructions (eitheriginal CIDD or reinjected CIDD)
dispatch into the pipeline, they are allocated ranyein the IT in addition to the RXB entry.
The IT entry is initialized as being valid and aint the newly allocated RXB entry number.

In-flight CIDD instructions carry with them only efr IT entry number to access the RXB
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entry, instead of the actual RXB entry number (siftcmay become stale). This level of
indirection allows us to insulate in-flight CIDDstructions from changes in the RXB.
Next, we show how the RXB’s IT is managed undefieddnt situations:
= Scenario 1: dispatching a CIDD instruction for tinst time:
1) Allocate a new RXB entry and a new IT entry.
2) Initialize the new IT entry to point to the new R)¢Atry.
3) Initialize the new RXB entry’s IT index to point the new IT entry.
= Scenario 2: writing source values into the RXB/TB:
1) Access IT entry.
2) If valid bit is not set, free IT entry and discdhg source values.
3) If valid bit is set:
a. Read out mapping and entry location bit (in RXBrof B).
b. Free the IT entry.
c. Update the RXB or TB with the source values andarckhe IT index
stored in the RXB or TB entry.
= Scenario 3: moving entry from the RXB to the TB:
1) If the RXB entry has a valid IT index, set corresging IT entry’s Temp Buffer
bit and overwrite the mapping with the new locatiohe TB.
2) If the RXB entry does not have a valid IT index,rdahing.
= Scenario 4: recirculating an RXB entry (moving grfiom TB back to RXB) with

no reinjecting:
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1) If the TB entry has a valid IT index, clear corresding IT entry's Temp Buffer
bit and overwrite the mapping with the new locatiothe RXB.
2) If the TB entry does not have a valid IT index,rdithing.

= Scenario 5: recirculating an RXB entry (moving grftom TB back to RXB) while

reinjecting a new instance of a CIDD instruction:

1) If the TB entry has a valid IT index, clear corresgingold IT entry’s valid bit
(this prevents old CIDD instances that are stiflight from wrongly updating
the RXB/TB). If the TB entry does not have a vdlidndex, do nothing.

2) Allocate a new IT entry for the new CIDD instrugetimstance being reinjected.

3) Initialize the new IT entry to point to the exiglirRXB entry, i.e., the shifted
location in the RXB.

4) Overwrite the existing RXB entry’s IT index to poto the new IT entry.

The size of the RXB’s IT is equal to the maximummier of in-flight CIDD
instructions (in the issue queue or in the backgpdline). The maximum number of CIDD
instructions in overall is equal to the size of REB. The maximum number of in-flight
instructions is equal to the size of the issue quelus the number of instructions in the
backend pipeline (#backend pipeline stages * psmrewidth). Hence, the size of the IT is
the lesser number between the maximum number oDdH3tructions and the maximum

number of in-flight instructions.
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IT size = Minimum  (
(RXB size),
(Issue queue size + (#backend pipeline stagescepsmr width))
)

The IT size presented above actually covers thestw@se scenario. However, in
practice, only a small percentage of in-flight rostions tends to comprise CIDD
instructions. Hence, the size of the IT can be nsmhller.

IT size optimized = Minimum (

(RXB size),

(% CIDD * (Issue queue size + (#backend pipelirgss * processor width) ) )

)

6.5 Conventional recovery

If a branch misprediction is detected before theehfeunit has reached the branch’s
reconvergent point, then there is no need to tesnsbntrol to the repair rename map and
RXB, as there are no CI instructions with respecthe branch yet. This scenario is easily
detected by checking if the mispredicted branch has yet popped the CFS (not
reconverged). In this case, the speculative renaae is simply restored to the checkpoint
corresponding to the mispredicted branch as in eotenal recovery.

6.6 Servicing multiple branch mispredictions

TCI supports servicing new mispredictions concuiyewith the one being serviced, if
the new mispredictions are logically after the repaname map. A new misprediction will

begin servicing when the repair rename map logiagahches it, in a natural continuation of
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RXB reconstruction. After fetching the correct Cistructions of the new misprediction,
CIDD instructions of both the initial and new misgictions are reinjected concurrently. If a
new misprediction is logically before the repainaee map, we wait until the initial RXB
reconstruction completes before servicing the newspradiction; however, an earlier

misprediction that has not reconverged is servicedediately via conventional recovery.
6.7 Store and load queues

Stores and loads issue out-of-order in the pipeliftee memory dependence predictor
(e.g. store sets (Chrysos, et al., 1998)) is audatee optimization to enable some loads to
issue speculatively yet confidently. Ultimately, &y dependencies between loads and
stores are enforced by the load/store queue (L&@nditional LSQ needs to maintain order
between all stores and loads for correct store-foagarding and load violation detection.
Hence, the order of the LSQ must be repaired whegroring control independence to
recover from a branch misprediction, since loads$ stores may be removed and inserted in
the middle of the window.

The LSQ can be repaired by leveraging the samenstwwtion technique used to adjust
the RXB after a branch misprediction. The modifie€fl) would need its own TB to assist in
shifting the loads and stores into their new lawai In addition, the modified LSQ would
need its own indirection table (IT). The IT is nesary to insulate loads and stores in the
pipeline from the LSQ repair process. Repairing ¢inder of the LSQ in this way may
degrade the performance of the system. The LSQshwmldny more instructions than the
compressed RXB, which could extend the branch madiption recovery process. To

overcome this problem, we need to reduce the tieeeled to repair the LSQ.
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Fortunately, many processors implement the ordd&/8Q as two separate ordered
gueues: a store queue (SQ) and a load queue (Lf@er detween the two queues is
maintained using pointers. Each LQ entry knows Wwhaatry in the SQ it is logically after.
Each SQ entry knows which entry in the LQ it isitadly after. This separation allows
repairing the LSQ twice as fast, since both the 8@ the LQ are repaired in parallel.
However, this implementation also requires us t Bpth the TB and IT into two structures,
one for the SQ and another for the LQ. The SQ &utiion table (SQ-IT) insulates the LQ
entries’ pointers from changes during SQ reconstmc Therefore, pointers in the LQ
entries point to the SQ-IT instead of the SQ estdeectly. This function is also carried out
by the LQ indirection table (LQ-IT) to insulate tB&) entries’ pointers from changes during
LQ reconstruction.

The main reason for separating the SQ from thed Que to the different functions they
perform. The SQ has two main functions: forwardinggmory values to loads and
committing stores to the cache in program ordertt@nother hand, the main function of the
LQ is to detect memory dependence violations duthéopossibility of a load receiving a
wrong value. This separation leads to higher efficy since we avoid accessing a large
unified LSQ when accessing one of the smaller gai&isufficient. Note, the SQ needs to be
fast (the store-load forwarding function) as iteats the performance of the processor;
however, the LQ is only needed to guarantee caresstwhich is not as time sensitive.

We observe that to fulfill all the requirements tbe LSQ, order only needs to be
maintained between store instructions and betwdere sand load instructions. Order

between load instructions is not required. Relaxihg order between load instructions
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enables us to design a more efficient LSQ thabmpatible with control independence. We
propose using a partially ordered LSQ (POLSQ), Widcthe combination of an ordered SQ
and an unordered LQ to achieve this objective. l@d@# shows an example of how loads
and stores would be organized in an ordered unifi&@, a split ordered SQ and ordered LQ,

and our new POLSQ. Notice that loads are only edierith respect to stores in the POLSQ.

Ordered
LSQ
L: Ld Oxa L
K: St Oxa K
J: Reconv
|
g I: StOx8
S H: LdOx0 H
s Ordered  Ordered Ordered Unordered
g G: Branch F SQ LQ sQ LQ
g F: LdOx4 E K L K L
§ E: Ld 0x8 5 | H | =
s D: St 0x0
a) C D = D H
C: LdOx0
B: StOx8 B B E B c
A: St 0x4 A A C A F
(@ (b) (c)

Figure 34. Example showing the relationship betweestores and loads in the LSQ:

(a) Ordered unified LSQ. (b) Ordered split SQ/LQ. €) Partially ordered LSQ.

In the POLSQ, the SQ will preserve the correct paogorder required for both store-
load data forwarding and committing stores to thehe in order. Hence, the SQ needs to be
reconstructed during branch misprediction recovéityis is achieved via the store queue
temporary buffer (SQ-TB) for recirculating the S@trees and the store queue indirection

table (SQ-IT) to insulate in-flight stores in thggline and pointers in the unordered LQ
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from SQ changes. Entries in the unordered LQ willg@reserve order with respect to stores
using the store pointers (SQ-IT index) in each L@y The LQ no longer needs to be
reconstructed after a branch misprediction sinceunordered. Therefore, it no longer needs
the load queue temporary buffer (LQ-TB) or the Igaéue indirection table (LQ-IT).

Figure 35 shows the POLSQ structures in more ddtaiaddition, the content of the
structures reflects the example in Figure 34. El@mevith gray borders are additions to a
conventional ordered split SQ/LQ design. Similatite ordered split SQ/LQ design, both the
unordered LQ and ordered SQ have an address CAM@omatching on addresses. Note,
the address CAM port of the unordered LQ does notige ordering information. Order is
determined indirectly leveraging the SQ order.Ha POLSQ, the unordered LQ also has an
additional CAM port for matching on the SQ-IT ind&his CAM port is used to free entries
in the LQ either due to committing these instrutsi@r due to squashing instructions as part
of branch misprediction recovery. Notice, the S&vatontains the branch and reconvergent
point instructions. These additional instructions aeeded to be able to reconstruct the SQ
correctly after a branch misprediction.

In the POLSQ, store-load forwarding is very similarthe conventional ordered split
ordered SQ/LQ design. In both designs, the loattuoson accesses the ordered SQ and
performs a search on all stores logically befoee Itad for a matching address. If one or
more stores match the load’s address, then theevafluhe youngest store (closest to the
load) is forwarded to the load. However, if no staddress matches then the value is loaded
from the data cache. POLSQ requires an additiotepp $efore performing store-load

forwarding. The SQ-IT is accessed using the lo&IsIT index to find the store entry (SQ
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index) to search before. This extra step is a auresgce of using the SQ-IT to insulate loads

from the possible shifting of SQ entries.

Unordered Load SQ indirection table Ordered Store
Queue (LQ) (SQ-IT) Queue (SQ)

5| Load SQ-IT P SQ S| Store SQ-IT
2| addr | index 2| index 2| addr | index
7 | E: Ox8 6 7 7

6 | H: Ox0 4 6 2 6 | K: Oxa 0
5 5 51J: Rec

4 4 3 4 11: Ox8

3 |L: Oxa 0 3 3|G: Br 4
2 |F: Ox4 6 2 1 2 | D: 0x0 6
1 1 11B: 0x8 2
0 |C: 0x0 2 0 6 0|A: 0x4

SQ-IT index CAM port:
free/squash LQ entries Address CAM port:

Address CAM port: memory forwarding
detect memory violations

Figure 35. Structures of the POLSQ (excluding SQ-TB with contents corresponding to
the running example.

Figure 36 gives an example of store-load forwardirsgng POLSQ. When a load
instruction (E in this example) computes its adslréke store-load forwarding process is
initiated. The first step involves accessing thel$@ith instruction E’s buffered index (SQ-
IT index = 6). This produces the current SQ indeat the load is logically after in the SQ
(SQ index = 2). The second step uses the compulgetss of the load (0x8) to find stores
with a matching address in the SQ, and uses the@& from step 1 to find the closest prior
matching store instruction. In this example, wda®that two store instructions match on the

address of the load (store B and store ), but amlg of the stores is actually before the
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load’s SQ index (store B). Hence, the load wilftwxevarded the value of the store instruction

B.
LQ SQ-IT SQ
5| Load SQ-IT 3 SQ s | Store SQ-IT
2| addr | index 2| index 2| addr | index
| Trigger | 7 | E: 0x8 6 7 7

6 | H: 0x0 4 6 2 6 | K: Oxa 0
5 5 5] J:Rec
4 4 3 41 1: 0x8
3| L: Oxa 0 3 3] G:Br 4
2| F: 0x4 6 2 1 2| D: 0x0 6
1 1 1] B:0x8 2
0] C:0x0 2 0 6 0] A:0x4

0x8

Step
2>

Figure 36. Store-load forwarding using the POLSQ.

Since loads execute speculatively with respect rior punresolved stores, memory
dependence violations may occur leading to incorpgogram execution. Detecting and
recovering from load violations is required for m@mt execution. Load violations are
detected by comparing completed store addresséassadfae load queue. If the address of a
completed store matches the address of any loatleinLQ, then a violation may have
occurred. However, since the LQ is unordered, auidit steps are needed to verify a load
violation has occurred. This is accomplished by panmg the order of the potentially
offending loads to the order of the store. Filsg potentially offending loads will access the
SQ-IT, to determine their current logical positionghe SQ. The SQ indices are then used to
confirm or dismiss the potential violations. Loatixated before the store are false

violations. However, loads located after the sareetrue violations needing recovery.
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Figure 37 gives an example of detecting a memomeddence violation using the
POLSQ. Assume that all loads in the LQ have execuggeculatively. When store A
computes its address, this triggers the need teckcher possible memory dependence
violations. The first step is to search the LQ &y load addresses that match the store’s
address (0x4). The search shows that load instrudtiis a match and, hence, a potential
violation. Next, we try to confirm the exceptionhd& second step is to access the SQ-IT to
determine the load’s current location in the SQ (8dgx = 2). Finally, in the third step, we
compare the load’s SQ index with the store’s S@xndVe find that the load instruction F is
after the store instruction A. Therefore, the Wiola of load instruction F is confirmed and

we need to recover to ensure correct execution.

LQ SQ-IT SQ
5| Load SQ-IT 3 SQ 5| Store | SQ-IT
2| addr | index 2| index 2| addr | index
7| E: 0x8 6 7 7
6 | H: 0x0 4 6 2 6 | K: Oxa 0
5 5 5] J: Rec
4 4 3 41 1:0x8
3| L:0oxa 0 3 3| G:Br 4
2 | F:0x4 6 2 1 2| D: 0x0 6
1 1 1] B:0x8 2
0| c:oxo0 2 0 6 0| A: 0x4 | Trigger |
0x4
Step

1
Figure 37. Detecting a memory dependence violatiarsing the POLSQ.

POLSQ entries are freed at retirement or duringhditamisprediction recovery. The
ordered SQ frees its entries in program order taereent or from the middle of the SQ as

part of the SQ reconstruction. On the other hamel L Q is unordered and relies on the SQ to
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free its entries. When a SQ entry is freed (eitlteetirement or during branch misprediction
recovery), the SQ entry’s SQ-IT index is broadadstethe LQ, freeing matching LQ entries.
Note, when the SQ is empty (i.e., the window doatsaontain any branches, reconvergent
points, or stores), dispatched loads are not iederto the LQ. These loads are guaranteed
not to cause load violations and require no stoaetforwarding.

6.8 Branch-sets and CIDD loads

Loads issue speculatively and memory dependencatioios are detected via the
POLSQ. A memory dependence predictor (store-seligiog (Chrysos, et al., 1998)) is used
to stall some loads when a predicted conflictimyests in the window. This reduces memory
dependence violations.

A conventional store-set predictor works for storesrrently in the window.
Unfortunately, servicing a branch misprediction malyange the stores in the window
(remove incorrect CD stores, insert correct CD estpior re-execute some CIDD stores)
observed previously by the store-set predictorsibbg introducing memory dependence
violations.

To reduce memory dependence violations caused &ygeld stores in the window, we
introduce a new “branch-set” predictor. When theLBQ detects a load violation, we
determine the mispredicted branch that influendeddonflicting store (the store is CD or
CIDD with respect to the branch). This is used taintain branch-load dependence
information (branch-sets), i.e., the load is coesed CIDD with respect to the branch via
memory dependencies. Hence, branches become pfoxiastentially conflicting stores that

they influence, whether the stores are currentthéwindow or not.
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When a load is dispatched, the branch-set prediatbpredict if there are or will be any
potentially conflicting stores in the window — whet current CD stores, potential late CD
stores, or current CIDD stores that may re-exeeutedd marks the load as being a CIDD
load. Predicted CIDD loads and their dependentdhame copied into the RXB like normal
CIDD instructions. When a mispredicted branch isvised, its CIDD loads will be re-
injected into the pipeline, allowing them the ogpaity to re-access the store-set predictor
as part of memory disambiguation.

6.9 Load violation recovery

The processor must detect and recover from loddtions. Load violations are detected
by the POLSQ and indicate failures by the brandtasd store-set predictors.

Although CIDD loads are present in the RXB for athogonal reason (to allow them
the opportunity to re-access the store-set pradafter a branch misprediction, as described
in Section6.8), violating CIDD loads are in the RXB and caked advantage of the RXB'’s
selective recovery capabilities to efficiently reeo from their violations. To do so, the
violating CIDD loads are simply re-injected intoetlpipeline along with their dependent
instructions. Notice that the RXB is a general cgle re-execution mechanism that can
cover any loads if we choose to insert arbitrapdand their dependents into the RXB.

On the other hand, violating CIDI loads cannot ctelely recover, since they are not
present in the RXB. Recovering from CIDI load vigas is delayed until retirement (to
avoid servicing a speculative load violation), &tieh point the entire pipeline is flushed, the

same as an exception.
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6.10 Reconvergence predictor misinformation

The reconvergence predictor may provide a flawedmeergent PC, incomplete IRS, or
misleading CD path length for a branch. Inaccusaaee detected when fetching CD
instructions of the branch. If inaccurate inforroatis detected during the first pass through
the CD region, it can be amended. If detected duittie second pass (repairing mispredicted
branch), it is handled by forgoing control indepemce. We call the latter “downgrades”
(downgrade to conventional recovery). The frequaesfayowngrades is reported in results.

An incomplete IRS is detected by observing logidastination registers that are not
specified in the IRS. If in the first pass, the IB& be updated so that it is more accurate
when poisoning begins at the reconvergent pointvéder, if in the second pass, we know
that the branch’s CIDD instructions in the RXB aret sufficient: some needed CIDD
instructions were not poisoned earlier due to titemplete IRS.

Flaws in a branch’s predicted reconvergent PC oxirmam CD path length are
detectable when the branch does not reconvergenwitie maximum number of allowable
CD instructions. If in the first pass, it is handlley popping the CFS top-of-stack, implicitly
merging the branch with its encompassing branclthvimay have better luck reconverging.

If in the second pass, the branch downgrades teectional recovery.
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Table 7. Benchmark statistics and Base/Perfect reks.

L2 load miss/1k | Branch misp. Base IPC Perfect %IPC improvemenl
Benchmarks instructions /1K instructions 4-issue 8-issue 4-issue 8-issue
Base TCI Base | TCI | 10371064 |1Q032|1Q64] 1032 | 1Q64 | 1Q32 | 1Q64
bzip2-program-ref 2.73 2.74 12.74| 1211 1.57.60| 1.83] 1.91] 115%| 124%| 168%| 208%
compress95-bigtest-ref  0.31 0.31 10.01| 9.92) 1.601.62|1.80| 1.89] 98% | 120% 119%| 171%
crafty-ref 0.06 0.06 5.67 6.17] 2.412.43|3.11|3.33] 55% | 61%| 81%| 108%
gap-ref 0.99 1.04 2.18 2.271 2.462.95| 3.62| 3.96] 20% | 24%| 26%| 339
gcc-expr-ref 0.11 0.12 4.99 5.60] 2.3@.38|3.02|3.13] 46% | 50%| 66%| 819
go95-5stone21-ref 0.02 0.02 20.65| 21.2] 1.21.21|1.32|1.33] 186%| 205%| 254% | 342%
gzip-graphic-ref 0.73 0.73 10.42| 1054 1.63.64|1.89|1.94] 102%| 113%| 128%| 178%
ijpeg95-specmun-ref | 0.63 0.63 4.67 4.83] 2.512.54|3.37|3.59) 42% | 44%| 66%| 769
1195-ref 0.00 0.00 5.24 6.42] 2.42.45|3.05|3.22] 52% | 59%| 79%| 969
mcf-ref 128.13| 128.871 5.02 4794 0.10.10/0.10(0.11] 1% | 2% | 1% | 1%
parser-ref 0.04 0.04 7.69 7.66] 1.751.85|1.99|2.19] 53% | 71%| 61%| 909
perlbmk-diffmail-ref 0.04 0.04 2.34 2.40] 2.973.00| 4.21| 4.45] 25% | 28%| 38%| 469
twolf-ref 0.02 0.03 13.43| 16,59 1.38.41|1.49|1.58] 86% | 116% 101%| 149%
vortex-two-ref 0.97 0.99 0.29 0.30] 3.543.63|5.18|/5.66] 3% | 3% | 4% | 5%
vpr-route-ref 5.48 6.91 9.98 9.62] 1.181.24| 1.32| 1.44] 73% | 95%| 73%| 979
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Figure 38. Performance improvement for 4-issue pipme.
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Figure 39. Performance improvement for 8-issue pigme.
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6.11 Results

We present performance results for five modBksse Proxy, Seq C) TCI, andPerfect
(the baseline with perfect branch predictidjoxy, Seq C) andTCI leverage thd®rain 1Q
re-execution substrate (see Sectoh3). Table 7 shows the IPCs ®asefor 4-issue and 8-
issue pipelines with 32-entry and 64-entry issueugs. IPC improvement &ferfectover
Baseis also shown in Table 7.

6.11.1Performance and analysis

Figure 38 shows the performance improvement ofvdreous models oveBase for 4-
issue pipelines with 32-entry and 64-entry issueugs. The 64-entry issue queue results are
shown as error bars with respect to the 32-entry. B&I improves IPC by up to 61% (64%)
overBasewith a 32-entry (64-entry) issue queue. The awet®§ improvement of Cl over
Base across all benchmarks, is 16% for both issue gseies.

Figure 39 shows corresponding IPC improvements Besefor 8-issue pipelines. The
maximum improvement of Cl over Baseincreases to 78% (88%) for a 32-entry (64-entry)
issue queue, as the opportunity cost of misprextstis higher for the wider pipeline. On
average, TCl achieves 20% (22%) IPC improvement oBasefor a 32-entry (64-entry)
issue queue.

TCI consistently and significantly outperforrS®qg CJ] making clear that resequencing
all ClI instructions after a misprediction does hgty capitalize on control independence
opportunity. Furthermore, as a consequence ofifignithe window to the size of the RXB,

Seq Cldegrades performance on some benchmarks withatetgphe ROB-fre®ase
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Proxyis not resource efficient. As seen in Figure 38 Bigure 39, for the 32-entry issue
queue,TCI outperformsProxy in all benchmarks. In some benchmarks (e.g.,pl),\Proxy
degrades with respect Baseas a result of issue queue pressure caused by pnakCIDD
instructions. The average gain f@roxy drops from 11% to 6% on a 4-issue pipeline when
the issue queue size is reduced from 64 to 32omitrast,TClI andSeq Clare less sensitive to
the issue queue size.

To understand the performance improvements ©f, we refer to measurements in
Table 7 (L2 load misses per 1000 instructions, dmamispredictions per 1000 instructions)
and Figure 40. The latter provides a breakdown aénth mispredictions. Some
mispredictions are not covered because they hawaxdnmum CD path length that exceeds
our chosen threshold of 256 (Non-CI Br) or theyohes before reconverging. For some
mispredictions, control independence is attempt@d Br) but it fails due to downgrade
scenarios, two of which are (i) incomplete IRS (I&8vngrade) and (ii) exceed temp buffer
(TB downgrade) thereby preventing RXB expansionnt@b independence cannot be
exploited in these cases. Due to this, in someHmaadks where branch misprediction rates
are fairly high, Perfect shows great promise bufCl cannot exploit enough control

independence resulting in more modest performaagesde.g., bzip, compress).
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Figure 40. Breakdown of branch mispredictions.

To not artificially favor misprediction-toleranceje chose the high quality perceptron
predictor (Jimenez, et al., 2001). Notice in Tableranch misprediction rates foICl are
typically higher than foiBase This is mainly due to gaps in global history (aes in
mispredicted CD regions are omitted from globatdrngused by future branches). We found
the perceptron predictor to be relatively moreliersi to history gaps than gshare. Further,
TCI can tolerate some extra mispredictions.

We analyze the 64-entry issue queue results bypgrguoenchmarks based on branch
misprediction rates (Table 7) and control indepecdecoverage (Cl coverage) (Figure 40):

= Group A (bzip, compress, go, gzip, twolf, and vpi)gh misprediction frequency (9

to 21/1K inst.). Gzip and twolf post significantegglups due to high CI coverage
(92% and 83%): 64% and 52% on 4-issue, and 88%64f@don 8-issue. Go posts a
medium speedup: 30% for 4-issue and 35% for 8-is§heugh it has the highest
branch misprediction frequency, benefits are lichity medium CI coverage (64%),
leaving about 7.6 mispredictions uncovered per 10@§tructions. For bzip,

compress, and vpr, Cl coverage is moderate (54%%, Z#hd 40%), leading to
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moderate speedups: 7%, 11%, and 14% for 4-issuke/%n 14%, and 19% for 8-
issue.

Group B (crafty, gcc, ijpeg, li, and parser): Maater misprediction frequency (4 to
8/1K inst.). For crafty, gcc, ijpeg, and parser,ddlerage is medium to high (55%-
88%), yielding modest speedups: 11%, 10%, 28%, Hdf8d on 4-issue, and 17%,
12%, 45% and 12% on 8-issue. Li shows low speedi®)o) due to its low CI
coverage (37%). In li, most mispredicted branchesolve before fetching their
reconvergent points.

Group C (gap, perl, and vortex): Low mispredictfoeguency (less than 3/1K inst.).
Group C does not benefit fromCIl due to excellent accuracy in the simulated
regions, yielding performance closeRerfect

Group D (mcf): Moderate misprediction frequencyt tsery high L2 miss rate. For
mcf, the simulated region is dominated by a higdgfirency of serialized L2 misses,
as shown in the second column of Table 7. Despgh &I coverage (81%), the
penalty of branch mispredictions is masked sin&y thccur in the shadow of L2

misses. This is confirmed by the negligible gamdferfect

6.11.2Instruction breakdown

Figure 41 characterizes retired instructions indtwetext of branch mispredictions. SBM

(“shadow of branch misprediction”) refers to cohtindependent instructions that are

logically in the window when a prior mispredictisdetected. (ITCI, these are preserved

whereasBasesquashes and re-fetches them.) In contrast, oigins before mispredictions

or instructions fetched after a misprediction h@gated servicing, are not considered to be
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in the shadow of a branch misprediction (Non-SBBERBM instructions represent control

independence opportunity, Non-SBM do not.
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Figure 41. Breakdown of all instructions.

SBM instructions are broken down further into tholsat were inserted into the RXB
(CIDD) and those that were not (CIDI). Among thakat were inserted into the RXB, we
indicate if they had to be reinjected (CIDD reirtjear not (CIDD no-reinject). SBM+CIDD
reinject occurs when the instruction is CIDD wietspect to the mispredicted branch (must
re-execute). SBM+CIDD no-reinject occurs when tigruction is not CIDD with respect to
the mispredicted branch, but rather a differentealy predicted branch. Thus, SBM+CIDD
no-reinject is tantamount to SBM+CIDI with respexthe misprediction.

Summing up, the top two classes in Figure 41 (SBNDECno-reinject, SBM+CIDI)
represent savings compared to conventional (feifpovery. Benchmarks in Group A and
Group B have the largest percentages of these edigpion-independent instructions (7%-
33% for Group A and 4%-11% for Group B). Their shges in Figure 38 and Figure 39

correlate well with their percentages of savedrutdions.
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6.11.3Branch prediction and branch misprediction sem@policies

When using conventional branch recovery, all Cltrindions after the branch are
squashed are re-fetched. During re-fetching, thbr@hches are re-predicted with a repaired
global history register (GHR) that reflects thereoted branch and new branches in its
correct CD region. This process may overturn soniigal predictions, eliminating some
branch mispredictions in the re-fetched CI region. the other hand, control independence
implementations keep CI instructions in the windafter detecting a branch misprediction;
hence, CI branches do not get to be predicted thghrepaired GHR. This may introduce
additional branch mispredictions in control indeg@mce implementations compared to
conventional processors. To avoid these additidomahch mispredictions, we choose a
branch predictor that is somewhat tolerant of amommplete GHR. In our studies, we have
found that the perceptron branch predictor is Sopéo the gshare branch predictor in its
tolerance to the imperfect GHR. Hence, we incorjgotiae perceptron branch predictor in all
our runs. In addition, while reconstructing the RXBe re-predict branches that have not
been truly resolved yet (i.e., branches in the RXBjis allows us to mimic the branch re-
prediction process in conventional processors aetbctl possible mispredictions early
(Rotenberg, et al., 1999).

In conventional processors, mispredicted branchesarviced immediately once their
outcomes are known. This leads to the highest panmg implementation. This is not
always true in control independence implementatiddimce Cl branches may execute
multiple times with incorrect source operands freanlier branch mispredictions, it may be

better to wait until the source operands are tstdyple (CIDI) before servicing the confirmed
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branch misprediction. Hence, we are faced with eeithllowing branches to execute
speculatively with whatever data they have, witle tthreat of false mispredictions
(Rotenberg, et al., 1999), or delaying their exiecutintil we can verify that their sources are
correct (the poison vector is clear).

In TCI, we found that the best combination happtn®e (1) allowing branches to
execute speculatively and (2) only re-predictingniches that have not executed or that have
executed with unconfirmed data. In Figure 42, wespnt results for four models. The first
does not service branches speculatively and doeseraredict branches at all (TCI:). The
second only allows branches to be serviced speeella{TCl: Spec. Br service). The third
only re-predicts branches that have not executedawe executed with unconfirmed data
(TCI: Repredict Br). The fourth services branchascsilatively and re-predicts branches that
have not executed or that executed with unconfirdad (TCI. Spec. Br service + Repredict
Br).

Servicing branches speculatively improves perforeamost of the time, as can be seen
in the harmonic mean IPC presented in Figure 42dyever, it degrades performance in
some benchmarks, such as gap and li. Branch réepoed improves performance in all
benchmarks except compress, where there is a stightadation. Using both these
techniques together further improves performandee o techniques can be combined,

resulting in higher performance than using eiteehhique separately.
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Figure 42. Branch prediction and branch mispredicton servicing policies.
6.11.4Memory dependence predictor

In TCI and other control independence implementatio predicting memory

dependencies faces additional challenges. Unlikecgasors with conventional branch
misprediction recovery, control independence im@etations have to deal with holes in the
middle of the window caused by branch mispredidiorhese holes may introduce wrong
store instructions from the wrong CD region or glet@rrect stores from the correct CD
region. Normal memory dependence predictors aralesigned to deal with these holes in

the instruction window.
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In this section, we investigate different memorypeledence predictors and their impact
on the performance of TCI. The first predictor anservative and chooses to stall all load
instructions until all prior stores have computbdit addresses (Always stall). The second
predictor allows loads to bypass unresolved stobes, if any load causes a memory
violation, then, for the remainder of executions tload will have to stall until all prior stores
have computed their addresses (Only stall violatidhe third predictor is very aggressive
and allows all loads to bypass unresolved stoesdyfr The next two predictors are based on
the store-set predictor that monitors relationshigsveen stores and loads. The basic store-
set predictor is studied (Store sets), as well anadified store-set predictor that adds
branches to the storeOset predictor (Store/Braets).sThe intuition behind this modification
is that branches act as proxies for stores in tBBiregion. Hence, a branch can give future
loads hints on which stores may be fetched in tiheré, if this happens to be a mispredicted
branch.

Figure 43 shows IPC results of the TCI architectwith different memory dependence
predictors. Figure 43(a)-(c) give the results afiwdual benchmarks, whereas Figure 43(d)
shows the harmonic mean IPC results. Notice thediptors based on the store-set predictor
outperform the basic predictors in all benchmantcept bzip, li, and vpr. We also notice that
the branch-set enhancement further improves onp#réormance of the base store-set
predictor, on average. For individual benchmarkultes we notice that all benchmarks

except bzip and vpr see an improvement.
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Figure 43. Memory dependence predictors.
6.11.5Sensitivity to the number of checkpoints and poisector bits

TCI leverages the checkpoint tags to identify bhesccovered by control independence.
The more checkpoints allocated to the processemither the branch misprediction
coverage and, hence, higher potential performance.

Figure 44 shows the IPC results of the TCI architec with 4, 8, 16, and 32
checkpoints. Figure 44(a)-(c) give the results mdividual benchmarks, whereas Figure
43(d) shows the harmonic mean IPC results. Thdtseskiow that increasing the number of

checkpoints helps performance. In addition, thefgoerance starts to saturate with 16
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checkpoints. In vpr, we notice that TCI with 16 ckgoints outperforms TCI with 32
checkpoints. Analyzing the data gathered from w@runs, the reason for this degradation is
a higher branch misprediction rate. By coveringitaital branch mispredictions in vpr, we
worsen the accuracy of the branch predictor (pbssibre to corrupting the GHR more with

32 checkpoints then with 16 checkpoints).
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Figure 44. TCI IPC results with varying number of checkpoints.
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6.11.6 Sensitivity to the number of CFSs and to IRS agsithons

TCI leverages the CFS to detect the reconvergehdramches. Initially, the leading
sequencer pushes the reconvergent PCs of fetcletthas onto the CFS. When the
reconvergent PC of a branch is fetched, the CF&cteteconvergence and the process of
copying the CIDD instructions into the RXB is commed. During branch misprediction
recovery, the newly fetched CD region may itselitain internal control-flow. To be able to
detect inner reconvergent points, we leverage ansk€FS that is devoted to the repair
rename map. Without this second CFS, the internahdhes would need to rely on the
original reconvergent point, which may not be ogtlisince it is a distant reconvergent point
for these branches.

In this section, we first investigate the effectusing the CFS only with the speculative
rename map versus allocating an additional CF$h®repair rename map. Second, we look
at the effect of using IRS optimizations discussefectiord4.3.1.4 on performance.

Figure 45 shows the IPC results of the TCI architecwith one or two CFSs. For both
models, we study the effect of using an unoptimi®8 or an optimized IRS. Figure 45(a)-
(c) give the results of individual benchmarks, vdas Figure 45(d) shows the harmonic
mean IPC results. From the results, we can condluaie on average, both multiple CFSs
and an optimized IRS improve the performance of. TMiwever, some benchmarks show
different trends. For example, twolf only benefitsm using multiple CFSs and not from

using the optimized IRS. On the other hand, gap bahefits from using an optimized IRS.
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Figure 45. TCI IPC results with a single or multiple CFSs while using an optimized or

unoptimized IRS.
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6.12 Additional related work

We already compared and contrasted TCI with théowahg control independence
architectures irChapter 5 and, in the interest of space, that d&on is not repeated here:
speculative multithreading architectures such adtistalar (Sohi, et al., 1995) and DMT
(Akkary, et al., 1998), trace processors (Rotenbetgal., 1999), and superscalar based
implementations including instruction reuse (Sodanial., 1997), dual ROBs (Chou, et al.,
1999), Skipper (Cher, et al., 2001), exact conwecgg Gandhi, et al., 2004), and a generic
implementation (Rotenberg, et al., 1999).

ReSlice (Sarangi, et al., 2005) uses slice re-di@tiio selectively recover from data
misspeculation. Correct repair is guaranteed byldhg for sufficient slice conditions. In
general, ReSlice is designed for any data misspgonl handling including control-flow
influenced data misspeculation, but it was studialy for thread-level speculation (TLS).
ReSlice aborts slice re-execution if there are ¢ines (whether in the slice or not) that
change the slice’s instructions. As we illustrateth the example in Sectioh 3.1 of two co-
mingled CIDD slices, RXB reconstruction allows sbcto change, moreover, the co-mingled
slices can resequence in any order, with correctite

The continual flow pipeline (CFP) (Srinivasan, ket 2004) is related to our work in that
CFP takes an analogous approach for releasingneEsoaf L2 miss dependent instructions.

However, CFP does not exploit control independence.
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Chapter 7

Summary and future work

In this thesis, we investigated two main claimgstriwe compared different branch
misprediction tolerance techniques qualitativelyd aquantitatively, including multipath,
static/dynamic predication, skip-based control petelence (Cl-skip), and speculation-based
control independence (Cl-speculate). As a resulthad comparison, we claim that ClI-
speculate is the best-performing branch mispremictolerance technique on a processor
with realistic resources. The chief reason is fBhspeculate does not penalize correctly
predicted branches and, hence, complements thetbpmadictor.

Second, we analyzed the strengths and weaknessdiffesent Cl-speculate models,
including Proxy, Seq C] andSeq CIDD in the context of a high-performance checkpoint-
based substrate compatible with control indepereletwe showed th&eq CIDDcombines
the resource efficiency @&eq Cland the bandwidth efficiency &froxy, while eliminating
their disadvantages.

Finally, we presented Transparent Control Indepeoel€TCl), a new microarchitecture
that implements theseq CIDD model. By proactively identifying CIDD instructienin
preparation for a branch misprediction, TCI onlyreeames CIDD instructions and only
reallocates resources to CIDD instructions whermovery is needed. Hence, TCI yields a
highly streamlined pipeline that quickly recyclegsources based on conventional
speculation, enabling a large window with smallleyaritical resources, and prevents many
mispredictions from disrupting this large window fieégching a condensed and self-sufficient
recovery program.

152



This thesis has investigated the TCl microarchitectin detail. However, many

interesting directions are left for future work.

Overcome Cl-speculate and Cl-skip limitations: @ésulate is limited by the
wasted bandwidth/resources consumed by the indd@i@énstructions. On the other
hand, CI-skip does not waste any bandwidth/ressupceincorrect CD instructions,
at the expense of penalizing many correctly predidbranches. It is worthwhile
investigating new architectures that overcome bGtkspeculate’s and CI-skip’s
limitations.

Control independence aware compiler: Control inddpace can only tolerate
mispredicted branches with reconvergent points. r&hemains a subset of
mispredicted branches with no reconvergent pomiséconvergence information or
very large CD region). In addition, the performarafecontrol independence is
dependent on the quality of the CI region (ratio@DI instructions to CIDD
instructions). The compiler can potentially increahe performance of control
independence by generating favorable code.

Scalable performance: Branch mispredictions limdrf@rmance scalability of
control independence based superscalar processorsvalsting resources and
bandwidth on incorrect CD instructions. Scaling thi@dow size and issue width
does not result in proportional performance scalingplementing TCI on top of
Thread-level Speculation (TLS) may achieve scatgtilecause TLS allocates some
resources and bandwidth to future CI instructiohdenstill allocating resources and

bandwidth near the commit point (balancing Cl-skap Cl-speculate). A drawback
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of TLS is the inability to repair branches that éapeculatively retired long ago, and
that depend on misspeculated loads. TCI can shiséoy adding control-flow slices

to load recovery slices, e.g., overcoming weakresdeReSlice (Sarangi, et al.,
2005). TCI would provide load-induced control-flomisspeculation tolerance within
a large speculative thread and TLS would balanseurees and bandwidth fairly
between near and distant threads. We believe thosldvlead to scalable

performance with resource scaling.

Additional uses of the recovery program: One ofittieresting contributions of the

TCl microarchitecture is the ability to repair thprocessor's state after
misspeculation using a self-sufficient recovery gpaon. This concept could be
extended to repair other types of speculationaimigular, | would like to investigate

the ability to speculate past page faults and teeerage a self-sufficient recovery

program to recover from any misspeculation.
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