

“Lucian Blaga” University of Sibiu
“Hermann Oberth” Engineering Faculty

Computer Science Department

Advanced Prediction Methods
Integrated Into Speculative

Computer Architectures

PhD Thesis

Abstract

Author:
Árpád GELLÉRT, MSc

PhD Supervisor:

Professor Lucian N. VINŢAN, PhD

PhD Co-supervisor:
Professor Theo UNGERER, PhD

SIBIU, 2008

Universitatea „Lucian Blaga” din Sibiu
Facultatea de inginerie „Hermann Oberth”
Catedra de Calculatoare şi Automatizări

Metode avansate de predicţie
integrate în arhitecturi cu

procesări speculative

Teză de doctorat

Rezumat

Autor:
Asist. univ. ing. Árpád GELLÉRT, MSc

Conducători ştiinţifici:
Prof. univ. dr. ing. Lucian N. VINŢAN

Prof. univ. dr. Theo UNGERER (cotutelă)

SIBIU, 2008

 III

 IV

Mulţumiri

În primul rând doresc să mulţumesc conducătorului meu de doctorat prof. univ. dr. ing. Lucian
VINŢAN, pentru încrederea acordată, pentru deosebita responsabilitate a coordonării sale
ştiinţifice, pentru discuţiile profesionale extrem de stimulative pe care le-am avut şi pentru întreg
sprijinul acordat cu multă generozitate. De asemenea, mulţumesc conducătorului de doctorat prin
cotutelă, prof. dr. Theo UNGERER de la Universitatea din Augsburg, Germania, pentru
discuţiile utile şi pentru sprijinul oferit. Ţin să mulţumesc colegului meu dr. Adrian FLOREA
pentru ajutorul acordat şi pentru sfaturile sale deosebit de utile. Mulţumesc şi d-lui Dr. Colin
EGAN de la Universitatea din Hertfordshire pentru colaborarea sa precum şi pentru observaţiile
şi sugestiile făcute. De asemenea, doresc să mulţumesc colegilor de la Catedra de Calculatoare şi
Automatizări din cadrul Universităţii „Lucian Blaga” pentru sprijinul acordat şi pentru climatul
favorabil asigurat. Nu în ultimul rând, doresc să mulţumesc familiei pentru sprijinul necontenit şi
pentru răbdarea de care a dat dovadă în această perioadă.

Cercetările prezentate în această lucrare au fost parţial susţinute prin granturile CNCSIS
TD-248/2007-2008 şi A-39/2007-2008 respectiv prin proiectul HPC-EUROPA (RII3-CT-2003-
506079) din cadrul programului FP6 „Structuring the European Research Area”, cu suportul
Comunităţii Europene (Research Infrastructure Action).

V

Rezumat

Paralelismul la nivelul instrucţiunilor este limitat de dependenţele existente între instrucţiuni, iar
pentru eliminarea lor microprocesoarele moderne, unele din ele prezentate în Capitolul 2,
folosesc tehnici speculative. Principalul obiectiv al acestei teze îl reprezintă creşterea
performanţelor unor microarhitecturi superscalare şi SMT (Simultaneous Multithreading) prin
tehnici anticipatorii dinamice precum predicţia branch-urilor, predicţia valorilor şi reutilizarea
instrucţiunilor. Această lucrare aduce contribuţii originale în identificarea branch-urilor dificile şi
îmbunătăţirea predictibilităţii lor, în caracterizarea comportamentului acestora din punct de
vedere al gradului de aleatorism, respectiv în dezvoltarea unor tehnici de reutilizare şi predicţie
selective a valorilor instrucţiunilor în cadrul arhitecturilor superscalare şi al celor cu fire multiple
de execuţie.

Instrucţiunile de ramificaţie, generate de construcţii de limbaj de tipul if, switch, for, while
etc., reprezintă un obstacol major în exploatarea paralelismului la nivelul instrucţiunilor (ILP).
Rezultate statistice bazate pe simulări laborioase pe benchmark-uri reprezentative arată că o
instrucţiune de ramificaţie apare la fiecare 5 – 8 instrucţiuni executate, ceea ce înseamnă că rata
de aducere a instrucţiunilor este limitată la cel mult 8, aducerea simultană a mai multor
instrucţiuni fiind inutilă. Pentru creşterea gradului de paralelism la nivelul instrucţiunilor
procesoarele moderne folosesc predictoare markoviene, neuronale, bayesiene, bazate pe arbori
de decizie sau pe algoritmi de tipul support vector machine etc., simplificate pentru a putea fi
implementate în hardware. Prin predicţia dinamică a branch-urilor pot fi procesate mai multe
basic block-uri în paralel. Pentru îmbunătăţirea performanţei instrucţiunile de ramificaţie trebuie
identificate şi atât direcţia cât şi adresa de salt trebuie predicţionate corect. Factorul de
superscalaritate al microprocesoarelor devine din ce în ce mai mare, permiţând rate de procesare
mai agresive pentru îmbunătăţirea performanţelor. Procesoarele cu factor mare de
superscalaritate pot fi afectate din punct de vedere al performanţelor în cazul predicţiilor greşite
când contextul CPU trebuie refăcut şi instrucţiunile trebuie reexecutate pe căile corecte. De
aceea, performanţa globală depinde foarte mult de acurateţea predictorului de salturi. Având în
vedere faptul că numărul de instrucţiuni executate per ciclu creşte neliniar cu acurateţea
predicţiei, este foarte importantă îmbunătăţirea acurateţii predictoarelor actuale. Calitatea unui
model de predicţie este dependentă de calitatea informaţiei disponibile. Este foarte importantă
alegerea caracteristicilor pe baza cărora se generează predicţia. Marea majoritate a predictoarelor
de salturi se bazează pe mai multe informaţii de intrare (adresa instrucţiunii de salt, istoria locală,
istoria globală, informaţii de cale etc.) fără să ţină cont de cauzele reale (ex. instrucţiuni de salt
nepolarizate) care produc o acurateţe scăzută şi implicit performanţe mai slabe.

În Capitolul 3 am demonstrat că o instrucţiune de ramificaţie într-un anumit context
dinamic al informaţiei de predicţie este greu de prezis dacă este nepolarizată în acel context,
oscilând între taken (saltul se face) respectiv not taken (saltul nu se face) într-un mod
nedeterminist, entropic (comportament dezordonat). Cu alte cuvinte, o instrucţiune de ramificaţie
dinamică este nepredictibilă cu o anumită informaţie de predicţie, dacă este nepolarizată în
contextul dinamic considerat şi comportamentul în acel context nu poate fi modelat prin procese
stohastice Markov. Am identificat aceste branch-uri dificile şi am încercat îmbunătăţirea
predictibilităţii lor prin extinderea informaţiei de predicţie. Pe baza unor simulări laborioase am
arătat că procentajul branch-urilor nepolarizate, pe istoria locală şi globală, este semnificativ: în
medie între 6% şi 24% pe benchmark-urile SPEC 2000, în funcţie de contextul de predicţie
folosit şi de lungimea acestuia (16-28 biţi). De asemenea, cercetările noastre au arătat că
adăugarea informaţiei de cale (formată din PC-urile ultimelor k branch-uri) la cele clasice de
istorie locală/globală determină o polarizare mai ridicată doar în cazul folosirii unor contexte de

Rezumat

 VI

istorie locală/globală scurte (sub 16 biţi). Istoriile locale şi globale suficient de lungi
aproximează foarte bine informaţia de cale.

În Capitolul 4 am arătat că pentru anumite instrucţiuni de ramificaţie, informaţiile de
predicţie limitate (istorie locală, istorie globală şi calea spre branch-ul supus predicţiei) folosite
de predictoarele actuale nu sunt întotdeauna suficient de relevante şi, din această cauză, ele nu
pot fi predicţionate cu acurateţe. Acurateţea cea mai ridicată pe branch-urile nepolarizate, de
doar 77,30%, am obţinut-o cu piecewise linear branch predictor [Jim05]. De aceea, este deosebit
de importantă găsirea unor informaţii relevante care determină comportamentul instrucţiunilor de
ramificaţie, pentru a fi utilizate de predictoare mai eficiente. Am dezvoltat diferite predictoare de
valori Markoviene care folosesc istoria comprimată a precedentelor condiţii de salt, ale cărei
elemente pot fi -1, 0 sau 1, în funcţie de semnul diferenţei dintre operanzi. Nici aceste
predictoare puternice, capabile să exploateze corelaţia dintre comportamentul branch-ului şi
istoria condiţiilor, n-au reuşit să îmbunătăţească predictibilitatea acestor branch-uri dificile. De
asemenea, am îmbunătăţit predictoare convenţionale (GAg, PAg) şi neuronale, prin utilizarea
condiţiei de salt precedente – Previous Branch Condition (PBC) – sub forma unei diferenţe pe 32
de biţi dintre operanzi. Chiar şi predictorul piecewise linear branch predictor îmbunătăţit, cel
mai performant pe branch-urile nepolarizate, obţine o acurateţe modestă de 78,3% pe branch-
urile nepolarizate, în timp ce acurateţea globală a predicţiei este de 95,45%. Aşadar, branch-urile
nepolarizate sunt caracterizate de acurateţi de predicţie scăzute, indiferent de informaţia de
predicţie folosită, reprezentând astfel o limitare fundamentală în domeniul predicţiei branch-
urilor. Astfel, creşterea acurateţii de predicţie a acestor instrucţiuni de ramificaţie nepolarizate
constituie o problemă deschisă, deoarece fiecare procent de astfel de instrucţiuni reduce decisiv
acurateţea predicţiei şi implicit performanţa de procesare.

Pornind de la această provocare tehnică, în Capitolul 5 am realizat un studiu comparativ
privind gradul de aleatorism al secvenţelor de simboluri (taken şi not taken) generate de branch-
uri polarizate respectiv nepolarizate. Pe baza cercetării bibliografice efectuate, am dezvoltat
patru metrici pentru caracterizarea comportamentului unui branch din punct de vedere al
gradului de aleatorism: complexitatea Kolmogorov a secvenţei de program care generează
branch-ul, rata de compresie, entropia discretă respectiv acurateţea de predicţie cu HMM
(Hidden Markov Models) a secvenţei generate de branch. Rezultatele simulărilor efectuate pe
şase benchmark-uri de numere întregi din suita SPEC 2000 arată că toate cele patru metrici de
caracterizare intrinsecă a unei secvenţe binare din punct de vedere al gradului de aleatorism
asociat, converg în aceeaşi direcţie. Ele sunt foarte utile arhitectului de microprocesoare întrucât
arată dacă un anumit branch dinamic este sau nu este „aleator” sau „nepredictibil”. În cazul în
care metricile utilizate arată în mod clar că branch-ul nu este unul intrinsec aleator, arhitectul are
şanse reale de îmbunătăţire a predictorului aferent. În cazul aleatorismului ridicat, răspunsul este
unul pesimist întrucât secvenţa este una intrinsec, şi deci iremediabil, aleatoare. De precizat că
aleatorismul comportării acestor branch-uri este o consecinţă a complexităţii uriaşe a
programelor care le generează, după cum arătăm în lucrare.

Instrucţiunile cu latenţă ridicată reprezintă o altă sursă de limitare a paralelismului la
nivelul instrucţiunilor. În Capitolul 6 am arătat că 28,68% din instrucţiunile de ramificaţie
(5,61% fiind chiar nepolarizate) sunt dependente de instrucţiuni cu latenţă ridicată (Load-uri
critice, înmulţiri, împărţiri). Aceste dependenţe reprezintă o sursă importantă de penalităţi
datorate predicţiilor greşite, afectând serios performanţa globală a procesorului. De aceea,
impactul negativ al branch-urilor, în special al celor nepolarizate, asupra performanţei globale
poate fi atenuat anticipând rezultatele instrucţiunilor cu latenţă ridicată. Am dezvoltat un
mecanism de anticipare selectivă a valorilor instrucţiunilor cu latenţă de execuţie ridicată, care
include o schemă de reutilizare pentru instrucţiunile Mul şi Div, respectiv un predictor de valori
pentru instrucţiunile Load critice. Rezultatele simulărilor efectuate, au arătat creşteri de
performanţă (IPC) de 3,5% pe benchmark-urile de numere întregi respectiv 23,6% pe cele
flotante şi o scădere importantă a consumului relativ de energie (a EDP-ului) de 6,2% respectiv
34,5%.

Rezumat

 VII

Tot în Capitolul 6 am arătat că există o corelaţie temporală între numele registrelor şi
valorile memorate în acestea. De aceea am extins predicţia dinamică a valorilor prin introducerea
conceptului de predicţie a valorilor centrată pe contextul CPU (registre) şi nu pe instrucţiuni.
Practic se prezice valoarea registrului destinaţie curent bazat pe analiza valorilor anterioare ale
acestuia. Localităţile valorilor obţinute pe anumite registre ale arhitecturii MIPS au fost
remarcabile conducând la concluzia că predicţia valorilor poate fi aplicată cu succes cel puţin
centrat pe aceste registre favorabile, prin ataşarea câte unui predictor la nivelul acestora. Astfel
se reduce semnificativ numărul predictoarelor şi scade corespunzător complexitatea şi consumul
de putere statică/dinamică. Rezultatele evaluărilor au arătat că predictorul hibrid cu prioritizare
dinamică, format dintr-un predictor adaptiv pe două niveluri şi unul incremental, exploatează cel
mai eficient această corelaţie, depăşind chiar şi hibridul mult mai complex format dintr-un
predictor PPM (Prediction by Partial Matching) şi unul incremental.

După ce am arătat utilitatea anticipării selective a instrucţiunilor cu latenţă ridicată într-o
arhitectură superscalară, în Capitolul 7 am analizat eficienţa acestor metode şi într-o arhitectură
SMT, focalizându-ne pe aceleaşi instrucţiuni: Mul şi Div respectiv Load-uri critice. Rezultatele
au arătat îmbunătăţiri IPC pe toate configuraţiile SMT evaluate. Cu cât numărul de fire este mai
mare, cu atât creşterea de performanţă devine însă tot mai puţin semnificativă, datorită
exploatării tot mai eficiente a unităţilor de execuţie partajate de către procesorul SMT. Plastic
spus, cu motorul SMT mergând în plin, sporul de performanţă aferent tehnicilor anticipative
implementate adiţional devine mai mic. Cele mai bune performanţe medii, de 2,29 IPC pe
benchmark-urile de numere întregi respectiv de 2,88 IPC pe cele flotante, s-au obţinut cu şase
fire de execuţie.

În Capitolul 8 sunt trecute succint în revistă contribuţiile ştiinţifice ale acestei lucrări şi
sunt evidenţiate câteva dintre direcţiile viitoare de cercetare.

“Lucian Blaga” University of Sibiu
“Hermann Oberth” Engineering Faculty

Computer Science Department

Advanced Prediction Methods
Integrated Into Speculative

Computer Architectures

PhD Thesis

Abstract

Author:
Árpád GELLÉRT, MSc

PhD Supervisor:

Professor Lucian N. VINŢAN, PhD

PhD Co-supervisor:
Professor Theo UNGERER, PhD

SIBIU, 2008

2

Acknowledgments

First of all I express my sincere consideration and deep gratitude to my PhD supervisor Professor
Lucian VINŢAN for his responsible and valuable scientific coordination, for providing
stimulating discussions focused on my PhD work and for his generous support. My full
recognition to my PhD co-supervisor Professor Theo UNGERER from the University of
Augsburg (Germany) for the useful discussions and for all his various support. I express my
gratitude to Dr. Adrian FLOREA for his continuous help and his very useful advices. Also my
gratitude to Dr. Colin EGAN from the University of Hertfordshire (UK) for his research
collaboration. I am also grateful to my colleagues from the Computer Science Department of
“Lucian Blaga” University, for their support and for a good working environment assured during
my PhD programme. Finally, I would like to thank my family for their patience and for all they
have done for me.

This work was supported in part by the Romanian Agency for Academic Research
(CNCSIS) through the research grants TD-248/2007-2008 and A-39/2007-2008. It was also
partially carried out under the HPC-EUROPA project (RII3-CT-2003-506079), with the support
of the European Community – Research Infrastructure Action under the FP6 “Structuring the
European Research Area” Programme.

3

Contents

1. Introduction__ 4

2. Speculative Computer Architectures __ 6
2.1. Speculative Dynamic Scheduling with Reorder Buffer __ 7
2.2. The Architecture of Sim-Outorder __ 9

3. Finding Difficult-to-Predict Branches __ 13
3.1. Methodology of Identifying Unbiased Branches_____________________________________ 13
3.2. Experimental Results___ 15

3.2.1. Pattern-Based Correlation __ 15
3.2.2. Path-Based Correlation __ 16

4. Predicting Unbiased Branches __ 17
4.1. Value-History-Based Branch Prediction with Markov Models ________________________ 17

4.1.1. Local Branch Difference Predictor ___ 18
4.1.2. Combined Global-Local Branch Difference Predictor ______________________________________ 18
4.1.3. Branch Difference Prediction by Combining Multiple Partial Matches _________________________ 19

4.2. Using Previous Branch Condition as Prediction Information _________________________ 20
4.2.1. The GAg Predictor Using Global PBC Value___ 20
4.2.2. The PAg Predictor Using Local PBC Value __ 21
4.2.3. The Piecewise Linear Branch Predictor Using PBC Value___________________________________ 21

4.3. Experimental Results___ 23
4.3.1. Evaluating State-of-the-Art Branch Predictors __ 23
4.3.2. Evaluating PBC-Based Branch Predictors ___ 24

5. Better Understanding Unbiased Branches Using Random Degrees_________________ 25
5.1. Random Degree Metrics for Characterizing Unbiased Branches Behavior ______________ 25

5.1.1. Random Degree Metric Based on Hidden Markov Models __________________________________ 25
5.1.2. Random Degree Metric Based on Discrete Entropy __ 26
5.1.3. Random Degree Metric Based on Compression Rate _______________________________________ 26
5.1.4. Random Degree Metric Based on Kolmogorov Complexity _________________________________ 27

5.2. Evaluation Results ___ 27
5.2.1. Random Degree Evaluation with HMMs __ 28
5.2.2. Random Degree Evaluation Based on Discrete Entropy_____________________________________ 28
5.2.3. Random Degree Evaluation Based on Compression Rate____________________________________ 29
5.2.4. Random Degree Evaluation Based on Kolmogorov Complexity ______________________________ 30

6. Exploiting Selective Instruction Reuse and Value Prediction in a Superscalar
Architecture __ 31

6.1. Anticipating Long-Latency Instructions Results ____________________________________ 31
6.1.1. Selective Dynamic Instruction Reuse ___ 32
6.1.2. Selective Load Value Prediction ___ 33
6.1.3. Experimental Results ___ 34

6.2. Contributions to Dynamic Value Prediction: CPU Context Prediction__________________ 36
6.2.1. Register Value Predictors __ 36
6.2.2. Experimental Results ___ 41

7. Enhancing the Simultaneous Multithreading Paradigm Through Selective Instruction
Reuse and Value Prediction__ 44

7.1. Selective Instruction Reuse and Value Prediction in SMT Architectures ________________ 44
7.2. Experimental Results___ 45

8. Conclusions and Further Work ___ 48

References__ 51

4

1. Introduction

The number of instructions that can be processed simultaneously in multiple instruction issue
(MII) microprocessors is limited by dependencies existing between instructions. To eliminate
these dependencies modern architectures, some of them presented in Chapter 2 as prerequisites
for this work, rely heavily on speculation. The main goal of this thesis is to increase instruction-
level parallelism (ILP) and therefore the overall performance of superscalar and multithreaded
microarchitectures through advanced dynamic anticipatory techniques like branch prediction,
value prediction and instruction reuse. This work brings original contributions in identifying
difficult-to-predict branches and improving their predictability, in characterizing the randomness
of their behavior, and in developing some selectively applied value prediction and instruction
reuse methods.

Branch instructions, appearing in high level program constructs like if, switch, for, while,
etc., are a major bottleneck in the exploitation of ILP, since (in general-purpose code)
conditional branches occur approximately every 5 – 8 instructions [Hen03]. Therefore, almost all
present-day multiple instruction issue microprocessors are using advanced branch prediction
techniques in order to increase ILP. Several prediction methods have been developed based on
some well-known learning algorithms (Markovian, neural, Bayesian, decision trees, support
vector machine, etc.) simplified for efficient hardware implementation. Through dynamic branch
prediction microprocessors are speculatively processing multiple basic blocks in parallel and
therefore their ability to increase ILP is stronger. In order to improve performance, branches
must be detected within the dynamic instruction stream, and both the direction taken by each
branch and the branch target address must be correctly predicted. Furthermore, predictions must
be completed in time to fetch instructions from the branch target address without interrupting the
flow of new instructions to the processor pipeline [Vin07]. In the case of misprediction, the CPU
context must be recovered and the correct paths have to be reissued. As instruction issue width
and the pipeline depth of MII processors are getting higher (allowing more aggressive clock rates
in order to improve the overall performance), accurate dynamic branch prediction becomes more
essential [Spr02]. Very high prediction accuracy is required because an increasing number of
instructions are lost before a branch misprediction can be corrected. As an example, the
performance of the Pentium 4 equivalent processor degrades by 0.45% per additional
misprediction cycle, and therefore the overall performance is very sensitive to branch prediction.
Taking into account that the average number of instructions executed per cycle (IPC) grows non-
linearly with the prediction accuracy [Yeh92], it is very important to further increase the
accuracy achieved by present-day branch predictors. From a technological point of view, modern
high-end processors use quite large tables for branch direction and target prediction [Sez02], and
they are accessed every cycle resulting in significant energy consumption, sometimes more than
10% of the total chip power [Cha03]. Therefore, power consumption is another important
constraint of all present-day branch predictors.

The quality of a prediction model is highly dependent on the quality of the available data.
Especially the choice of the features to base the prediction on is important. The vast majority of
branch prediction approaches rely on usage of a greater number of input features without taking
into account the real causes (indirect jumps and calls and, especially, unbiased branches) that
produce a lower accuracy and implicit lower performance. In Chapter 3 we identified difficult-
to-predict branches as being unbiased branches that have a “random” dynamic behavior, and
tried to improve their predictability through context length extension. In Chapter 4 we showed
that present-day branch predictors cannot accurately predict these branches due to their limited
prediction information (branch address, local/global branch history, path). Therefore we

Introduction

5

improved several state-of-the-art branch predictors with additional prediction information,
namely the previous branch condition or even a compressed branch condition history, in order to
improve their prediction accuracy. We also showed in Chapter 5 that sequences generated by
unbiased branches are characterized by high random degrees.

Long-latency instructions, especially critical Loads due to their memory wall problem (the
increasing gap between processor and memory speeds), represent another source of ILP
limitation. A solution to reduce the number of cache misses consists in prefetching speculatively
data from memory to cache. Multithreading can also reduce the effects of the memory wall by
hiding memory latency through issuing into the pipelines instructions from different idle threads.
Value Prediction (VP) is another technique that increases performance by eliminating true data
dependency constraints. VP architectures allow data dependent instructions to issue and execute
speculatively using the predicted value. The speculative executions are validated when the
correct values are known. If the value was correctly predicted the critical path is reduced,
otherwise the instructions executed with wrong entries must be executed again. On the other
hand, dynamic instruction reuse is a non-speculative microarchitectural technique that exploits
the repetition of dynamic instructions with the same input values. The main benefit of reusing
long-latency instructions consists in unlocking dependent instructions.

In Chapter 6 we developed a superscalar architecture that selectively anticipates the values
produced by long-latency instructions. We focused on Multiply, Division and Loads with miss in
the L1 data cache. Thus, we implemented a Dynamic Instruction Reuse scheme for the Mul/Div
instructions and a simple Last Value Predictor for the critical Load instructions. We also
extended dynamic VP by introducing the concept of register-centric prediction instead of
instruction-centric prediction. The register value prediction technique consists in predicting
registers’ next values based on the previously seen values. It executes the subsequent data
dependent instructions using the predicted values. In Chapter 7 we evaluated a simultaneous
multithreaded architecture enhanced with selective instruction reuse and value prediction to
anticipate the results of long-latency instructions.

Finally, Chapter 8 concludes the thesis pointing out the original contributions and suggests
some further work directions.

6

2. Speculative Computer Architectures

All processors since about 1985 use pipelining in order to improve performance by overlapping
the execution of instructions. A pipeline acts like an assembly line with instructions processed in
phases. With simple pipelining, only one instruction at a time is introduced into the pipeline, but
multiple instructions may be in different phases of execution concurrently. In the case of
superscalar processors, more than one instruction at a time can be introduced into multiple
pipelines to be executed simultaneously. This potential execution overlap among independent
instructions is called instruction-level parallelism (ILP). There are some features of both
programs and processors that limit the amount of parallelism such as structural hazards, data
hazards and control stalls. In particular, to exploit instruction-level parallelism it must be
determined which instructions can be executed in parallel. If two instructions are parallel and no
structural hazards exist, they can be executed simultaneously in a pipeline without causing any
stalls, assuming that the pipeline has sufficient resources. If two instructions are dependent they
are not parallel and must be executed in order. There are three different types of dependences:
data dependences, name dependences and control dependences.

An instruction is data dependent if it uses the result produced by another instruction. Data
dependences can be overcome through hardware techniques (dynamic instruction reuse, value
prediction) and software techniques (by reorganizing the code). When two dependent
instructions are close enough to change the order of access to the operand involved in the
dependence, a data hazard occurs. Considering two successive instructions i and j, a RAW (read
after write) data hazard occurs when instruction j tries to read a source before i writes it, so j
incorrectly gets the old value. A WAW (write after write) data hazard occurs when instruction j
tries to write an operand before it is written by i. A WAR (write after read) data hazard occurs
when instruction j tries to write a destination before it is read by i.

Name dependences occur when two instructions use the same register or memory location.
Instructions involved in name dependence can be executed simultaneously or reordered if the
register or memory location used by the instructions is changed so the instructions do not
conflict. This renaming can be more easily done for register operands (register renaming), either
statically by a compiler or dynamically by the hardware.

Control dependences are generated by branch instructions. An instruction that is control
dependent on a branch cannot be executed until the branch direction is known. Control stalls can
be eliminated or reduced by a variety of hardware techniques (branch prediction) and software
techniques (static scheduling).

A major limitation of the simple pipelining techniques is that they all use in-order
instruction issue and execution. Instructions are issued in program order and if an instruction is
stalled in the pipeline, no later instructions can proceed. Out-of-order execution introduces the
possibility of data hazards. Hennessy and Patterson in [Hen03] explore an important technique,
called dynamic scheduling, in which the hardware rearranges the instruction execution in order
to reduce the stalls. In a dynamically scheduled pipeline, all instructions are dispatched in order,
however, they can be stalled or bypass each other in the issue stage and thus execute out of
order.

Branch prediction is a mechanism that reduces control stalls in order to improve
performance in a multiple instruction issue processor. Control dependences are overcome by
speculating on branch outcomes and executing dependent instructions as if the predictions were
correct. Obviously it became necessary the integration of branch prediction into dynamically
scheduled processors. Predicting the outcomes of conditional branches, more instructions can be
fetched in parallel (a part of them are fetched speculatively from the predicted path), increasing

Speculative Computer Architectures

7

in this way the execution window [Smi95]. The fetched instructions are analyzed for true data
dependences, issued to the functional units and executed out-of-order, in parallel, based on the
availability of the operands. Value prediction is another technique that speculatively forwards
predicted instruction results to the dependent instructions. With speculative execution, the
architectural storage cannot be updated immediately when instructions complete execution. The
results must be held in a temporary status until the architectural state can be updated in
sequential program order.

2.1. Speculative Dynamic Scheduling with Reorder Buffer

The present-day out-of-order issue superscalar microprocessor model is implemented as a
speculative microarchitecture that actually fetches, issues and executes instructions based on
branch prediction using Tomasulo’s algorithm or closely related algorithms and a structure
called Reorder Buffer (ROB). Figure 2.1 shows the hardware structure of the processor including
the ROB.

Instruction
queue

From instruction unit

Register
file

Reservation
stations

2
12

1

3

Adders Multipliers

Operation bus Operand
buses

Common data bus (CDB)

Address unit Address

Memory unit

Address

Reorder
buffer

Load
buffers

Store
data

Load data

Data

Reg

Store
address

Figure 2.1. Tomasulo’s architecture extended to support speculation

The hardware that implements Tomasulo’s algorithm [Tom67] can be extended to support
speculation, only if the bypassing of results, which is needed to execute an instruction
speculatively, is separated from the completion of an instruction (that consists in updating the
memory or register file). Doing this separation, an instruction bypasses its results to other
instructions, without performing any CPU updates that cannot be canceled. When the instruction
is no longer speculative (after its writeback stage), it updates the register file or memory; this
phase is called instruction commit. Separating the bypassing of results from instruction
completion makes possible avoiding imprecise exceptions in out-of-order execution, preserving
in this way exception behavior. An exception is imprecise if the processor state when the
exception raised is not exactly as in the case of sequential execution.

Adding this commit phase to the instruction execution sequence, an additional set of
hardware buffers is required, which hold the results of instructions that have finished execution
but have not yet committed. The reorder buffer provides the register renaming function and it is
also used to pass the results of speculatively executed instructions. The reservation stations keep
operations and operands only between the time they issue end the time they begin execution.

Speculative Computer Architectures

8

Each ROB entry contains four fields: Type, Dest, Value and the Ready field. The Type field
indicates whether the instruction is a branch, a Store, or a register operation (ALU operation or
Load). The Dest field supplies the register number for Loads and ALU operations or the memory
address for Stores, where the instruction result must be written. The Value field is used to hold
the value of the result until the instruction commits. The Ready field indicates if the instruction
has completed execution and the value is ready. The ROB completely replaces the Store buffers.
The ROB is usually implemented as a circular FIFO queue having associative search facilities.

Each reservation station has the following eight fields:

• Op – the operation performed on the source operands (opcode);
• Qj, Qk – the ROB entries that will provide the source operands, a value of zero

indicating that the source operand is already available in Vj, Vk, or that it is
unnecessary;

• Vj, Vk – the values of the source operands; for Loads and Stores the Vj field is used to
hold the offset;

• A – holds the memory address for Loads or Stores: initially holds the immediate field,
after the address calculation holds the effective address;

• Dest – supply the corresponding ROB entry number representing the destination for
the result produced by the execution unit.

• Busy – indicates if a reservation station is available or occupied.

The register file has a field Qi indicating the number of the ROB entry that contains the
operation whose result should be stored into the register. The six steps involved in instruction
execution are the following [Hen03]:

1. Fetch – fetches the next instruction into the instruction queue.
2. Dispatch – gets the next instruction from the instruction queue. If all reservation stations are

full or the ROB is full, then instruction dispatch is stalled until both structures have available
entries. If there is an empty reservation station and the tail of the ROB is free, the instruction
is sent to the reservation station. The Busy bit of the allocated reservation station is set and
the Ready field of the ROB entry is reset. The source registers are searched associatively in
the Dest field of the ROB, considering the last entry in the case of multiple hits, since the
ROB entries are allocated in order. If an operand value is available in the ROB (Ready=1), it
is written from the Value field into the reservation station field Vj / Vk. If the operand value is
not available (Ready=0), the number of ROB entry that will provide the operand is written
into the reservation station field Qj / Qk. In the case of miss in the ROB the operand value is
written from the register set into the reservation station field Vj / Vk. The number of ROB
entry allocated for the value of the result is sent into the Dest field of the reservation station.
The destination register number is written into the Dest field of the ROB entry.

3. Issue – if an operand is not yet available, the common data bus (CDB) is monitored until it is
computed and when the operand is available on the CDB it is placed into the corresponding
reservation stations. In order to avoid structural hazards, modern processors have multiple
CDBs and a multiported ROB. When all the operands are available, the instruction is issued
to the appropriate functional unit. By delaying instruction execution until the operands are
available, RAW dependences are detected.

4. Execute – the corresponding functional unit executes the operation. In the case of Loads and
Stores the effective memory address is computed in this stage. In the case of a taken branch,
usually is calculated the branch’s target address.

5. Writeback – when the result is available, it is written to the CDB (together with the ROB
entry number indicated by the Dest field of the reservation station) and from there into the
Value field of the corresponding ROB entry, whose Ready field is set to 1. The Busy field of
the corresponding reservation station is reset. The result is also written into field Vj / Vk of the

Speculative Computer Architectures

9

reservation stations that are waiting for it. In the case of a Store instruction if the value to be
stored is available, it is written into the Value field of the ROB entry allocated for that Store.
If the value to be stored is not available, the CDB is monitored, and when it is received, the
Value field of the ROB entry is updated.

6. Commit – the normal commit case occurs when an instruction reaches the head of ROB
having its result available (Ready=1) and if no exception occurs. In this case, the result is
written from the Val field of the ROB entry into the destination register or memory location
indicated by the Dest field of the ROB entry and, after that, the instruction is squashed from
the ROB. Thus, the in order commit is guaranteed by the in order dispatch, whereas the issue,
execute and writeback stages can be processed out of order. When an incorrectly predicted
branch reaches the head of the ROB, the ROB is flushed and the execution is restarted with
the correct successor of the branch.

As it can be observed, in the case of speculative architectures is very important when is
performed the updating. Using the ROB, speculative executions are possible because the register
file or memory is updated with the result of an instruction only when that instruction is no longer
speculative.

2.2. The Architecture of Sim-Outorder

In this work we relied on some commonly used simulators like Simplesim [Bur97] and the M-
SIM [Sha05] which extends the Simplesim toolset with support for concurrent execution of
multiple threads and power consumption evaluation. The sim-outorder simulator (see Figure 2.2)
from the Simplesim-3.0 toolset [Bur97] simulates a superscalar architecture that uses a register
update unit (RUU) in order to support out-of-order and speculative execution. The RUU is a
combination of reservation stations and ROB, and is organized as a circular queue. Each RUU
entry contains the following fields:

• IR – stores the instruction bits.
• op – holds the opcode after the instruction is decoded in the dispatch stage.
• PC – the instruction address.
• next_PC – the next instruction address.
• pred_PC – the next predicted instruction address.
• ea_comp – non-zero if the operation is an address computation (the first operation in

the case of Load and Store instruction preceding the memory access).
• in_LSQ – non-zero if the Load/Store operation is in the LSQ.
• recover_inst – indicates when an instruction is the start of misspeculation.
• dir_update – pointer to the branch predictor state entry.
• spec_mode – indicates if the instruction was fetched speculatively.
• addr – holds the effective address for Load/Store instructions.
• tag – RUU slot tag, used to identify an operation in the RUU.
• queued – indicates that the operands are ready and the operation was queued to the

ready_queue.
• issued – indicates that the operation was issued for execution.
• completed – indicates that the operation has completed the execution.
• onames – output logical register names.
• odep_list – dependency list containing a pointer to all dependent RUU entries. These

lists are used to limit the number of associative searches in the RUU when operations
complete the execution and need to wake up dependent operations.

• idep_ready – indicates if the input operands are ready.

Speculative Computer Architectures

10

(in
str

.)
M

EM
(in

str
.)

IF
Q

ta
il

he
ad

(r
s-

R)
C

V

(r
s)

R
U

U
(r

s)
od

ep
_l

is
t

ta
il

he
ad

cr
ea

to
r

(r
s)

LS
Q

(r
s)

od
ep

_l
is

t

ta
il

he
ad

cr
ea

to
r

(r
s)

RQ ta
il

he
ad

ta
il

he
ad

(r
s)

EQ

N
U

LL
N

U
LL

N
U

LL
N

U
LL

BP
RE

D

if
fre

e

M
D

_F
ET

C
H

_I
N

ST
()

(p
is

a.
h)

if
(C

TR
L)

bp
re

d_
lo

ok
up

()

FE
T

C
H

ru
u_

fe
tc

h(
)

sp
ec

no
n-

sp
ec

if
fre

e

M
D

_S
ET

_O
PC

O
D

E(
)

(p
is

a.
h) al

l

on
ly

 L
D

/S
T

se
t o

ut
pu

t d
ep

.
ru

u_
in

sta
ll_

od
ep

()

al
l

on
ly

 L
D

/S
T

se
t i

np
ut

 d
ep

.
ru

u_
lin

k_
id

ep
()

on
ly

 L
D

/S
T

al
l

D
IS

PA
T

C
H

ru
u_

di
sp

at
ch

()

FU

al
l

if
(O

PS
_R

EA
D

Y
()

)
re

ad
yq

_e
nq

ue
ue

()

on
ly

 S
T

on
ly

 L
D

if
(O

PS
_R

EA
D

Y
()

)
re

ad
yq

_e
nq

ue
ue

()

L
SQ

_R
E

FR
E

SH
ls

q_
re

fr
es

h(
)

if
(S

T)
 c

om
pl

et
ed

=1
el

se
ev

en
tq

_q
ue

ue
_e

ve
nt

(la
t)

la
t

la
t+

IS
SU

E
ru

u_
is

su
e(

)

R
E

L
E

A
SE

_F
U

ru
u_

re
le

as
e_

fu
()

–

bp
re

d_
up

da
te

()

if
(L

SQ
[h

ea
d]

.c
om

pl
et

ed
&

 S
T)

Ex
ec

ut
e

st
or

e
Fr

ee
 L

SQ
[h

ea
d]

if
(R

U
U

[h
ea

d]
.c

om
pl

et
ed

W
rit

e
re

su
lt

Fr
ee

 R
U

U
[h

ea
d]

if
(L

SQ
[h

ea
d]

.c
om

pl
et

ed
&

 L
D

)
W

rit
e

re
su

lt
Fr

ee
 L

SQ
[h

ea
d]

if
(C

TR
L)

C
O

M
M

IT
ru

u_
co

m
m

it(
)

if
(O

PS
_R

EA
D

Y
()

)
re

ad
yq

_e
nq

ue
ue

()

if
(o

p.
co

m
pl

et
ed

)
C

om
pl

et
ed

=1
So

lv
e

ou
tp

ut
 d

ep
.

Fr
ee

 C
VW

R
IT

EB
A

C
K

ru
u_

w
rit

eb
ac

k(
)

cr
ea

to
r

bp
re

d_
up

da
te

()

(in
str

.)
M

EM
(in

str
.)

IF
Q

ta
il

he
ad

(r
s-

R)
C

V

(r
s)

R
U

U
(r

s)
od

ep
_l

is
t

ta
il

he
ad

cr
ea

to
r

(r
s)

LS
Q

(r
s)

od
ep

_l
is

t

ta
il

he
ad

cr
ea

to
r

(r
s)

RQ ta
il

he
ad

ta
il

he
ad

(r
s)

EQ

N
U

LL
N

U
LL

N
U

LL
N

U
LL

BP
RE

D

if
fre

e

M
D

_F
ET

C
H

_I
N

ST
()

(p
is

a.
h)

if
(C

TR
L)

bp
re

d_
lo

ok
up

()

FE
T

C
H

ru
u_

fe
tc

h(
)

sp
ec

sp
ec

no
n-

sp
ec

if
fre

e

M
D

_S
ET

_O
PC

O
D

E(
)

(p
is

a.
h) al

l

on
ly

 L
D

/S
T

se
t o

ut
pu

t d
ep

.
ru

u_
in

sta
ll_

od
ep

()

al
l

on
ly

 L
D

/S
T

se
t i

np
ut

 d
ep

.
ru

u_
lin

k_
id

ep
()

on
ly

 L
D

/S
T

al
l

D
IS

PA
T

C
H

ru
u_

di
sp

at
ch

()

FUFU

al
l

if
(O

PS
_R

EA
D

Y
()

)
re

ad
yq

_e
nq

ue
ue

()

on
ly

 S
T

on
ly

 L
D

if
(O

PS
_R

EA
D

Y
()

)
re

ad
yq

_e
nq

ue
ue

()

L
SQ

_R
E

FR
E

SH
ls

q_
re

fr
es

h(
)

if
(S

T)
 c

om
pl

et
ed

=1
el

se
ev

en
tq

_q
ue

ue
_e

ve
nt

(la
t)

la
t

la
t+

IS
SU

E
ru

u_
is

su
e(

)

R
E

L
E

A
SE

_F
U

ru
u_

re
le

as
e_

fu
()

–

bp
re

d_
up

da
te

()

if
(L

SQ
[h

ea
d]

.c
om

pl
et

ed
&

 S
T)

Ex
ec

ut
e

st
or

e
Fr

ee
 L

SQ
[h

ea
d]

if
(R

U
U

[h
ea

d]
.c

om
pl

et
ed

W
rit

e
re

su
lt

Fr
ee

 R
U

U
[h

ea
d]

if
(L

SQ
[h

ea
d]

.c
om

pl
et

ed
&

 L
D

)
W

rit
e

re
su

lt
Fr

ee
 L

SQ
[h

ea
d]

if
(C

TR
L)

C
O

M
M

IT
ru

u_
co

m
m

it(
)

if
(O

PS
_R

EA
D

Y
()

)
re

ad
yq

_e
nq

ue
ue

()

if
(o

p.
co

m
pl

et
ed

)
C

om
pl

et
ed

=1
So

lv
e

ou
tp

ut
 d

ep
.

Fr
ee

 C
VW

R
IT

EB
A

C
K

ru
u_

w
rit

eb
ac

k(
)

cr
ea

to
r

bp
re

d_
up

da
te

()

Figure 2.2. The architecture of Sim-Outorder

Speculative Computer Architectures

11

For Loads and Stores a Load/Store Queue (LSQ) is also used. The LSQ has the same
structure as the RUU. Load and Store instructions are split in two operations: the effective
address computation that is inserted into the RUU and the Load/Store operation that is inserted
into the LSQ and is activated by the RUU when the address computation is finished. A rename-
table structure called Create Vector (CV) holds for each register the last mapped RUU or LSQ
entry that will write the result into that register. The CV is divided into a speculative table
(maintains the last speculative state of the register file) and a non-speculative table (maintains
the last non-speculative state of the register file). The CV is used to handle instruction
dependencies: to construct the dependency lists (odep_list) and to squash efficiently the RUU
and LSQ structures if an exception occurs. An instruction fetch queue (IFQ) is used to hold the
instructions fetched from memory. Each IFQ entry has the following fields: IR (holds instruction
bits), regs_PC (instruction address), pred_PC (next predicted instruction address) and
dir_update (pointer to the branch predictor state entry). A ready queue (RQ) is used to hold
operations whose operands are ready and an event queue (EQ) holds operations during their
execution. Each RQ and EQ location contains only a pointer to the RUU or LSQ entry associated
to the operation.

The sim-outorder simulator uses a pipeline with five important stages implemented in
software: fetch, dispatch, issue, write back and commit. The classical execution stage is
distributed into the dispatch and issue stages as we will detail further. In the software
implementation of this superscalar architecture the pipeline stages are executed sequentially and
are not overlapped leading in this way to synchronization problems. More exactly, because one
cycle of execution in the simulator corresponds to the sequential iteration of all pipeline stages
once, the effects of a certain stage are “instantaneously” seen by the next pipeline stages too
early, in the current cycle, while they must be seen only in the next cycle. Therefore, in order to
eliminate these synchronization problems, the pipeline stages are traversed in reverse order, and
thus, the effects of a certain one-cycle operation are visible correctly only in the next cycle
(iteration). The seven execution steps of sim-outorder are the following:

1. Fetch (ruu_fetch) – as many instructions are fetched up (MD_FETCH_INST) as one branch

prediction and one instruction-cache line support, without overflowing the instruction fetch
queue (IFQ). The instructions are inserted into the tail of the IFQ (fetch_data). If the
simulator is started with a branch predictor, the instructions are pre-decoded in order to
identify branches (MD_SET_OPCODE). When a branch instruction occurs the next
instruction is fetched from the address pred_PC predicted using a certain pred branch
predictor (bpred_lookup).

2. Dispatch (ruu_dispatch) – gets the next instruction from the head of the IFQ, decodes the
instruction (MD_SET_OPCODE), and inserts it into the tail of the RUU if it is free. For
Loads and Stores the effective address computation is inserted into the tail of the RUU, and
the Load/Store operation is inserted into the tail of the LSQ. If the RUU/LSQ is full, then
instruction dispatch is stalled until the structure has available entries. The dispatched
instructions are removed from the IFQ. A pointer to the allocated RUU/LSQ entry (rs) is
introduced into the dependency list (odep_list) corresponding to the RUU/LSQ entries –
identified based on the CV – that will produce the input operands (ruu_link_idep). The
output register numbers are written into the onames field and a pointer to the allocated
RUU/LSQ entry (rs) is set to all the output registers in the CV structure (ruu_install_odep).
If all the input operands are available, a pointer to the allocated RUU/LSQ entry (rs) is
inserted into the tail of the RQ (readyq_enqueue). Actually the simulator “instantaneously”
executes the operation in this stage, but correctly simulates its latency through the write-back
event in the next stages. In the case of a Store instruction a pointer to the allocated LSQ entry
is also inserted into the tail of the RQ (Load operations are queued into the RQ only in the
LSQ-refresh stage).

Speculative Computer Architectures

12

3. Issue (ruu_issue) – tries to issue all instructions from the RQ (ready_queue) to free
functional units (FU) whose busy count is set to the latency value corresponding to the issued
operation. A writeback-event is scheduled for each issued operation to the cycle obtained
adding its execution latency to the current cycle: a pointer to the corresponding RUU/LSQ
entry (rs) is inserted together with the scheduled writeback-cycle (wb_cycle) into the EQ
(eventq_queue_event). The EQ (event_queue) is sorted from earliest to latest event. The
issued operations are evacuated from the RQ. The issue stage ends with the execution of the
operations at the functional units (the previously presented Tomasulo’s architecture has an
additional execute stage for this operation). Thus, the execution is simulated by scheduling
the writeback-event to the cycle obtained by adding the corresponding execution latency to
the current cycle. Store operations are executed only in the commit stage.

4. LSQ-refresh (lsq_refresh) – a pointer to each Load operation (rs) from the LSQ whose
operands are ready is inserted into the RQ (readyq_enqueue). Store operations are inserted
during the dispatch stage.

5. Writeback (ruu_writeback) – in the case of a misprediction the RUU/LSQ entries
corresponding to speculatively fetched instructions are squashed and the CV is reverted to
the last non-speculative state. In the normal writeback case, for each event from the EQ
whose scheduled writeback-cycle is less than or equal to the current execution cycle (the
event has already occurred), the result is written from the functional unit (FU) to the
RUU/LSQ, and the event is removed from the EQ. If the RUU/LSQ entry afferent to the
completed operation is still mapped in the CV to the output registers, the corresponding CV
entries are invalidated (assigning NULL), because the construction of the operation’s
dependency list (odep_list) finished. Dependent operations that occur in the future will get
the result from the RUU/LSQ or from the register file. Each RUU/LSQ entry that has a
pointer in the dependency list (odep_list) of the completed operation is updated with the
result, and if all its operands are ready, it is queued into the RQ – its pointer (rs) is inserted
into the tail of the RQ (readyq_enqueue).

6. FU-release (ruu_release_fu) – the busy count of each FU is decremented by 1. An FU is free
for another operation when its busy count is 0.

7. Commit (ruu_commit) – the normal commit case occurs when an instruction reaches the head
of the RUU/LSQ and its result is available (completed=TRUE). The results are written from
the head of the RUU/LSQ into the register file. If a Store instruction occurs in the head of the
LSQ, the Store data is written to the data cache. At the end of the commit stage the head of
the RUU/LSQ is freed and, in the case of branch instructions, the used branch predictor pred
is updated (bpred_update).

The fetch, dispatch and commit stages are effectuated in program order avoiding thus imprecise
exceptions, while the other stages might be executed out of order. In fact, instruction execution is
done “instantaneously” in ruu_dispatch. Thus, instructions flow down the pipeline only for
timing evaluations. Therefore, there is no need to actually store the result value into the
RUU/LSQ structure at the end of the writeback stage and there is no need to update the register
file in the commit stage because that’s already been done in the dispatch stage.

13

3. Finding Difficult-to-Predict Branches

Since the performances of modern speculative architectures highly depend on branch prediction
accuracy, we will further focalize on some branch prediction limitations, namely, on hard-to-
predict branches. Our first goal is to identify difficult branches in the SPEC 2000 benchmarks
[SPEC]. We consider that a branch in a certain context is difficult-to-predict if it is unbiased (the
branch behavior is not sufficiently polarized for that certain context) and the taken and not taken
outcomes are non-deterministically shuffled. The second goal is to improve prediction accuracy
for branches with low polarization rate, introducing new feature sets that will increase their
polarization rate and, therefore, their predictability.

3.1. Methodology of Identifying Unbiased Branches

Based on our previous work already published in [Gel06a, Vin06, Oan06, Gel07c] we are
presenting in this paragraph the methodology of finding difficult-to-predict branches, as they are
defined in our approach. For each processed dynamic branch, the prediction is achieved based on
some binary context information (local or global branch history, the path leading up to the
branch, etc.). We have statistically observed that some dynamic branches occurring in certain
contexts have a highly unbiased behavior. We consider that a branch in a context is difficult-to-
predict if it is unbiased and the taken and not taken outcomes are shuffled. Therefore, we
evaluate the impact of unbiased branches on different commonly used features.

We called feature the binary context on p bits of prediction information such as local
history, global history or path. Each static branch finally has associated k dynamic contexts in
which it can appear (pk 2≤). A context instance is a dynamic branch executed in the respective
context. We introduce the polarization index (P) of a certain branch context as follows:





<
≥

==
5.0,
5.0,

),max()(
01

00
10 ff

ff
ffSP i (3.1)

where:

• { }kSSSS ...,,, 21= = set of distinct contexts that appear during all branch instances;
• k = number of distinct contexts, pk 2≤ , where p is the length of the binary context;

•
NTT

NTf
NTT

Tf
+

=
+

= 10 , , NT = number of not taken branch instances corresponding

to context Si, T = number of taken branch instances corresponding to context Si,
ki ...,,2,1)(=∀ , and obviously 110 =+ ff ;

• if kiSP i ...,,2,1)(,1)(=∀= , then the context iS is completely biased (100%), and thus,
the afferent branch is highly predictable;

• if kiSP i ...,,2,1)(,5.0)(=∀= , then the context iS is totally unbiased, and thus, the
afferent branch might be not predictable if the taken and not taken outcomes are shuffled.

If the taken and not taken outcomes are grouped separately, even in the case of a low
polarization index, the branch is predictable. The unbiased branches are not predictable only if
the taken and not taken outcomes are chaotically shuffled, because in this case, the predictors
cannot learn their behavior. We introduce the distribution index (shuffle degree) for a certain
branch context, defined as follows:

Finding Difficult-to-Predict Branches

14








>
⋅

=
=

0,
),min(2

0,0
)(

t
t

t

i n
TNT

n
n

SD (3.2)

where:

• nt = the number of branch outcome transitions (10 → or 01→) in a certain context Si;
•),min(2 TNT⋅ = maximum number of possible transitions;
• k = number of distinct contexts, pk 2≤ , where p is the length of the binary context;
• if kiSD i ...,,2,1)(,1)(=∀→ , then the behavior of the branch in context Si is

“contradictory”;
• if kiSD i ...,,2,1)(,0)(=∀→ , then the behavior of the branch in context Si is constant.

As it can be observed in Figure 3.1, we want to systematically analyze different feature
sets used by different present-day branch predictors in order to find and, hopefully, to reduce the
list of unbiased branch contexts (contexts with low polarization P).

GH
16 bits

LH
16 bits

GH
20 bits

LH
20 bits

GH
p bits

LH
p bits

U

U

U

U

U
Unbiased
branches

GH
16 bits
GH

16 bits

LH
16 bits
LH

16 bits

GH
20 bits
GH

20 bits

LH
20 bits
LH

20 bits

GH
p bits
GH
p bits

LH
p bits
LH
p bits

U

U

U

U

UUU
Unbiased
branches
Unbiased
branches

Figure 3.1. Reducing the number of unbiased branches through feature set extension

We approached an iterative methodology: we evaluate and reduce the number of unbiased
branches by passing them through successive cascades of different prediction contexts (feature
sets). Gradually this list is shortened by increasing the lengths of feature sets (from 16 to 28 bits)
and reapplying the algorithm. Thus, the final list of unbiased branches contains only the branches
that were unbiased throughout all their contexts, being therefore identified as difficult-to predict.
For the final list of unbiased branches we will try to find new relevant feature sets in order to
further improve their polarization index and, therefore, the prediction accuracy.

In our experiments we concentrated only on benchmarks with a percentage of unbiased
branch context instances (obtained with relation (3.3)), greater than a certain threshold (T=1%)
considering that the potential prediction accuracy improvement is not significant in the case of
benchmarks with percentage of unbiased context instances less than 1%. If the percentage of
unbiased branch contexts is 1%, even if they would be solved, the prediction accuracy would
increase with maximum 1%. This maximum can be reached when the predictor solves all
discovered difficult-to-predict branches.

01.0==
i

i

NB
NUB

T (3.3)

where NUBi is the total number of unbiased branch context instances on benchmark i, and NBi is
the number of dynamic branches on benchmark i (the total number of branch context instances).

Finding Difficult-to-Predict Branches

15

3.2. Experimental Results

3.2.1. Pattern-Based Correlation

In order to reduce the number of unbiased branches, we first increased the lengths of the branch
contexts (local/global histories, etc.). We identified and decreased the number of unbiased
branches in the SPEC 2000 benchmark suite [SPEC] by passing unbiased branches through
successive cascades of different prediction contexts – local history (LH) and global history (GH)
– by increasing history information (from 16 to 28 bits).

6.19

17.48

0

5

10

15

20

25

30

16 bits 20 bits 24 bits 28 bits

Feature Set Length

U
nb

ia
se

d
C

on
te

xt
 In

st
an

ce
s

[%
] LH

GH

Figure 3.2. Reduction of average percentages of unbiased context instances (P<0.95) in the SPEC 2000

benchmarks by extending the lengths of feature sets

Using a global history context of 16 bits, about 17% of branches are unbiased and unpredictable.
This number decreases to about 6% if the context has 28 bits. We consider that this value of 6%
is still too high and further investigations are required. The evaluation results also show that the
“ultimate predictability limit” of history context-based prediction is about 94%, considering
unbiased branches as completely unpredictable. A conclusion based on our simulation results is
that about 94% of dynamic branches can be solved with prediction information of up to 28 bits.

For the determined unbiased branch contexts we are analyzing now if the taken and not
taken outcomes are grouped separately. This is necessary, because if the branch outcomes are not
shuffled they are predictable using corresponding two-level adaptive predictors, but if these
outputs are shuffled the branches are not predictable. We used relation (3.2) in order to
determine the distribution indexes for each unpredictable branch context per benchmark. We
evaluated only the unbiased dynamic branches obtained using all their contexts of 16 bits. As our
evaluations show, in the case of unbiased branch contexts, the taken and not taken outcomes are
not grouped separately, more, they are highly shuffled.

The percentage of unbiased branch contexts having highly shuffled outcomes (with
distribution index greater than 0.4) is 76.3% in the case of local history of 16 bits and 89.37% in
the case of global history of 16 bits. A distribution index of 1.0 means the highest possible
alternation frequency (with taken or not taken periods of 1). A distribution index of 0.5 means
again a high alternation, since, supposing a constant frequency, the taken or not taken periods are
only 2, lower than the predictors’ learning times. In the same manner, periods of 3 introduce a
distribution of about 0.25, and periods of 5 generate a distribution index of 0.15, therefore we
considered that if the distribution index is lower than 0.2 the taken and not taken outcomes are
not highly shuffled, and the branch’s behavior could be learned.

Taking into account that increasing the prediction accuracy with 1%, the IPC (instructions-
per-cycle) is improved with more than 1% (it grows non-linearly) [Yeh92], there are great
chances to obtain considerably better overall performances even if not all of the 6.19% difficult
predictable branches, from the SPEC 2000 benchmarks, will be solved. Therefore, we consider

Finding Difficult-to-Predict Branches

16

that this 6.19% represents a significant percentage of unbiased branch context instances, and in
the same time a good improvement potential in terms of prediction accuracy and IPC. Focalising
on these unbiased branches – in order to design some efficient path-based predictors for them
[Nair95, Vin99b] – the overall prediction accuracy should increase with some percents, that
would be quite remarkable. The simulation results also lead to the conclusion that as higher is the
feature set length used in the prediction process, as higher is the branch polarization index and
hopefully the prediction accuracy (Figure 3.2). A certain large context (e.g. 100 bits) – due to its
better precision – has lower occurrence probability than a smaller one, and higher dispersion
capabilities (the dispersion grows exponentially). Thus, very large contexts can significantly
improve the branch polarization and the prediction accuracy, too. However, they are not always
feasable for hardware implementation. The question is: what feature set length is really feasable
for hardware implementation, and more important, in this case, which is the solution regarding
the unbiased branches? In our opinion, as we’ll further show, a feasable solution in this case
could be given by path-based predictors.

3.2.2. Path-Based Correlation

The path information could be a solution for relatively short history contexts (low correlations).
Our hypothesis is that short contexts used together with path information should replace
significantly longer contexts, providing the same prediction accuracy. A common criticism for
most of the present two-level adaptive branch prediction schemes consists in the fact that they
used insufficient global correlation information [Vin99b]. There are situations when a certain
static branch, in the same global history context pattern, has different behaviors (taken / not
taken), and therefore the branch in that context is unbiased. If each bit belonging to the global
history will be associated during the prediction process with its corresponding PC, the context of
the current branch becomes more precise, and therefore its prediction accuracy could be better.
Our next goal is to extend the correlation information with the path, according to the above idea
[Vin99b]. Extending the correlation information in this way, suggests that at different
occurrences of a certain static branch with the same global history context, the path contexts can
be different.

We evaluated – on all branches (non-iterative simulation) – the number of unbiased
context instances (P<0.95) using as prediction information paths of different lengths (p PCs)
together with global histories of the same lengths (p bits). The results are presented in Figure 3.3
where they are compared with the results obtained using only global history.

15%
20%
25%
30%
35%
40%
45%
50%
55%

p=1 p=4 p=8 p=12 p=16 p=20 p=24

Context Length

U
nb

ia
se

d
C

on
te

xt
 In

st
an

ce
s

GH (p bits)

GH (p bits) + PATH (p
PCs)

Figure 3.3. The gain introduced by the path for different context lengths – SPEC 2000 benchmarks

Figure 3.3 shows that the path is relevant for better polarization rate and prediction accuracy
only in the case of short contexts and there is only marginal gain with longer history lengths (p
bits), meaning that a global branch history of more than 12 bits approximates very well the
longer path information (p PCs).

17

4. Predicting Unbiased Branches

In Chapter 3 we showed that the percentages of difficult branches are quite significant (at
average between 6% and 24%, depending on the different used prediction contexts and their
lengths). This chapter presents some important present-day branch predictors and some
condition-history-based branch predictors proposed by us in [Gel07a, Gel07b, Gel07c], all of
them being used to evaluate, in terms of prediction accuracy, the unbiased branches identified in
Chapter 3.

4.1. Value-History-Based Branch Prediction with Markov Models

Value predictors that implement the “Prediction by Partial Matching” algorithm (PPM) [Saz97,
Jos97] represent an important class of context-based predictors. Mudge et al. [Mud96]
demonstrates that all two-level adaptive predictors implement special cases of the PPM
algorithm that is widely used in data compression. It seems that PPM provides the ultimate
predictability limit of two-level predictors. The PPM-based predictor contains a set of simple
Markov predictors, each one predicting the value that followed the corresponding context with
the highest frequency. In a complete-PPM predictor, if a prediction cannot be furnished by the
Markov predictor of order k, then the pattern length is shortened and the Markov predictor of
order 1−k is used to furnish the prediction and so on until either a prediction is furnished or the
Markov predictor is of the order 0.

Our second idea in order to reduce the number of unbiased branches, after the feature set
length extension (presented in Chapter 3), was to find new relevant information that could reduce
their entropy making them more predictable. Representing the problem in a superior feature
space dimension is a general well-known method in solving many Computer Science
classification/prediction problems. Therefore, we predict the condition of the current branch (B0)
based on the conditions of the previous branches (B1, B2, ..., Bh), with different PPM predictors.
We use each branch condition as the value or the sign of the difference between the operand
values (two approaches). Regarding the approach that uses only the signs of the input
differences, a value of 1 indicates that the corresponding branch difference is positive, a -1
indicates a negative difference, while a 0 indicates equality between the branch inputs. The
outcome of the current branch B0 is determined speculatively based on its predicted condition
(difference).

But is it better to use only the signs of differences as history information instead of the
values of differences? Is this compressed branch condition history more efficient than the most
complete value history? The number of distinct symbols that can occur in a value history is huge
reported to only three symbols that can appear in a sign history. Thus, the frequency of symbols
in a value history is very low. In the following example only a Markov predictor of order 1 can
be used for the value history, and it generates a misprediction, while in the case of the sign
history, even a Markov predictor of order 5 can be used, which achieves the correct prediction:

Value history: -126, -34, 7, -42, -28, 75, -829, -7982, 102, -542, -42, ?
Sign history: -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, ?

Obviously, through a sign history much deeper correlations can be exploited than with a value
history. A natural question is: are the sign histories better than the simplest branch outcome
histories (taken / not taken)? The difference-sign history can be more efficient because, due to its

Predicting Unbiased Branches

18

additional information, it can efficiently exploit shorter contexts, too. The following example
presents the situation for bgez:

Difference history: 138, 52, 47, 0, -591, 5783, 4, 702, 0, -35, 721, 5, 14, 0, ?
Sign history: +, +, +, 0, -, +, +, +, 0, -, +, +, +, 0, ?
Output history: T, T, T, T, NT, T, T, T, T, NT, T, T, T, T, ?

If after “0” statistically follows “-“ (and, in the case of bgez, “0” is associated together with “+”
to taken) a first order Markov can correctly predict in the case of sign history, while, in the case
of outcome history, the Markov predictor must be of order 4 or higher for correct prediction.
Anyway, the simulation results will decide which type of branch condition history is the most
efficient.

4.1.1. Local Branch Difference Predictor

Figure 4.1 presents the speculative branch execution mechanism of our local PPM branch-
difference predictor. The Branch Difference History Table (BDHT) maintains for each static
branch the differences corresponding to the branch’s last h dynamic instances (B1, B2, ..., Bh).
The BDHT entry is selected by the branch address (PC of B0). The branch differences from the
selected BDHT entry are then used as inputs into the complete-PPM predictor. The PPM
predictor of order k (where k<h) furnishes the predicted difference of the branch undergoing
execution (B0). Speculative execution of the branch B0 based on its predicted difference only
occures in the case that the considered pattern of length k is repeated in the string of last h
differences with a frequency greater than or equal to a certain threshold value.

dif(Bh)

Branch Difference
History Table

Predicted
dif(B0)

dif(B2) dif(B1)

Prediction by Partial Matching
(PPM)

PC of B0

Pattern
length

Speculative
execution of B0

dif(Bh)

Branch Difference
History Table

Predicted
dif(B0)

dif(B2) dif(B1)

Prediction by Partial Matching
(PPM)

PC of B0PC of B0

Pattern
length

Speculative
execution of B0

Speculative
execution of B0

Figure 4.1. A local PPM-based branch-difference predictor

4.1.2. Combined Global-Local Branch Difference Predictor

Figure 4.2 presents the speculative branch execution mechanism using a combined global and
local PPM-based branch-difference predictor. The Global History Register (GHR) contains the
global history: the global branch difference history or the global branch outcome history (two
different approaches). For each global history pattern, a distinct BDHT is maintained. Thus, the
BDHT is selected by the GHR. Each BDHT is configured as a local BDHT and is accessed as
described in section 4.1.1.

Predicting Unbiased Branches

19

Predicted
dif(B0)

Prediction by Partial Matching
(PPM)

PC of B0

Pattern
length

Speculative
execution of B0

GHR of B0
Branch Difference History Tables

dif(Bh) dif(B2) dif(B1)

dif(Bh) dif(B2) dif(B1)

dif(Bh) dif(B2) dif(B1)

BDHT 1

BDHT k

BDHT n

dif(Bh) dif(B2) dif(B1)

Predicted
dif(B0)

Prediction by Partial Matching
(PPM)

PC of B0PC of B0

Pattern
length

Speculative
execution of B0

Speculative
execution of B0

GHR of B0GHR of B0
Branch Difference History Tables

dif(Bh) dif(B2) dif(B1)

dif(Bh) dif(B2) dif(B1)

dif(Bh) dif(B2) dif(B1)

BDHT 1

BDHT k

BDHT n

Branch Difference History Tables

dif(Bh) dif(B2) dif(B1)dif(Bh) dif(B2) dif(B1)

dif(Bh) dif(B2) dif(B1)dif(Bh) dif(B2) dif(B1)

dif(Bh) dif(B2) dif(B1)dif(Bh) dif(B2) dif(B1)

BDHT 1

BDHT k

BDHT n

dif(Bh) dif(B2) dif(B1)

Figure 4.2. A global-local PPM-based branch-difference predictor

4.1.3. Branch Difference Prediction by Combining Multiple Partial Matches

Figure 4.3 presents the speculative branch execution mechanism using the Branch-Difference
Predicion by Combining Multiple Partial Matches (BPCMP). An entry in the BDHT is accessed
as described in section 4.1.1, but now the h branch differences are used as inputs into multiple
Markov predictors of different orders. Thus, the sign of the input difference (-1, 1, or 0)
corresponding to the current branch (B0) is predicted using multiple Markov predictors of orders
ranging between [1, n], n<h (see Figure 4.3). The final branch difference prediction is then
furnished through majority vote.

PC of B0

Branch Difference
History Table (BDHT)

dif(Bh) dif(B2) dif(B1)

Predicted
dif(B0)

(-1, 0, +1)

Speculative
execution of B0

Markov
ord. 1

Predicted
dif(B0)

(-1, 0, +1)

Predicted
dif(B0)

(-1, 0, +1)

Predicted
dif(B0)

(-1, 0, +1)

Voter

Markov
ord. k

Markov
ord. n

PC of B0PC of B0

Branch Difference
History Table (BDHT)

dif(Bh) dif(B2) dif(B1)dif(Bh) dif(B2) dif(B1)

Predicted
dif(B0)

(-1, 0, +1)

Speculative
execution of B0

Speculative
execution of B0

Markov
ord. 1

Markov
ord. 1

Predicted
dif(B0)

(-1, 0, +1)

Predicted
dif(B0)

(-1, 0, +1)

Predicted
dif(B0)

(-1, 0, +1)

Voter

Markov
ord. k

Markov
ord. k

Markov
ord. n

Markov
ord. n

Figure 4.3. Branch-difference prediction by combining multiple Markov predictors

Predicting Unbiased Branches

20

We have also investigated a confidence-based voting mechanism. In this case, each BDHT
entry holds n saturated confidence counters, in the range [-4, 4], which are associated with the n
Markov predictors. A certain Markov predictor of order k (1≤ k≤n) will furnish a value
prediction if the corresponding pattern occures at least once in the history of h values. In the case
of a correctly predicted branch, its confidence saturating counter is incremented and decremented
in the case of a misprediction. Each Markov prediction is replicated as many times as the
corresponding counter’s value shows (only if this value is greater than zero). These multiple
predictions are then passed to the voter, which furnishes the most frequent value.

4.2. Using Previous Branch Condition as Prediction Information

In this section we tried to use the value of previous branch condition (PBC) as prediction
information, taking into account that it determines branch’s behavior. A PBC value consists in
the difference of the operand values involved in the previous branch condition. Using only one
branch condition is in concordance with Heil’s observation in [Hei99b] that majority of
prediction accuracy improvement is gained by using a single branch difference. First we
evaluated the percentage of unbiased context instances (having polarization P less than 0.95)
using the PBC value together with the global histories of p bits (1≤p≤24). Figure 4.4 compares
the percentages of unbiased branches using the global history (GH), the global history
concatenated with the path (GH + PATH), and the global history concatenated with the value of
the previous branch condition (GH + PBC).

15%

20%

25%

30%

35%

40%

45%

50%

p=1 p=4 p=8 p=12 p=16 p=20 p=24

Context Length

U
nb

ia
se

d
C

on
te

xt
 In

st
an

ce
s

GH (p bits)

GH (p bits) + PATH (p PCs)

GH (p bits) + PBC

Figure 4.4. The gain introduced by the previous branch condition (PBC) vs. the path for different context

lengths – SPEC 2000 benchmarks

The experimental results, presented in Figure 4.4, show that the PBC value is more
efficient than the path information: it decreased the percentage of unbiased branches for all
evaluated context lengths (1≤p≤24). Therefore we could use this new prediction information in
some state-of-the-art branch predictors in order to increase prediction accuracy [Gel07a, Gel07b,
Gel07c].

4.2.1. The GAg Predictor Using Global PBC Value

We first analyzed a GAg scheme that uses the previous branch condition (PBC) by XORing it
with the GHR (as the Gshare XORed the PC with the GHR). The predictor’s scheme is presented
in Figure 4.5.

Predicting Unbiased Branches

21

Global Pattern History Table (GPHT)

Predicted PC Prediction bits
W

L2size

PBC

W bits

XOR

GHR

W bits

Global Pattern History Table (GPHT)

Predicted PC Prediction bits
W

L2size

PBC

W bits

XORXOR

GHR

W bits

Figure 4.5. The GAg predictor using the previous branch condition (PBC)

4.2.2. The PAg Predictor Using Local PBC Value

We have also analyzed a PAg scheme that uses the local (per-address) PBC value (previous
branch condition) by XORing it with the LHR (local history register). The Per-address Branch
History Table (PBHT) maintains for each branch its own Local History (LH) and its Previous
Branch Condition (PBC) value. The predictor is presented in Figure 4.6.

W Global Pattern History Table (GPHT)

Predicted PC Prediction bits L2size
W

XOR

PChigh PClow

log2L1size
LHR k

W bits

Per-address Branch
History Table (PBHT)

PBC k

W bits

WW Global Pattern History Table (GPHT)

Predicted PC Prediction bits L2size

Global Pattern History Table (GPHT)

Predicted PC Prediction bits L2size
W

XORXOR

PChigh PClow

log2L1size

PChigh PClow

log2L1size
LHR k

W bits

Per-address Branch
History Table (PBHT)

PBC k

W bits

W

Figure 4.6. The PAg predictor using the local PBC value

4.2.3. The Piecewise Linear Branch Predictor Using PBC Value

Further, we propose some improved idealized piecewise linear branch predictors (see Figures
4.7 and 4.8) that use the previous global or local branch condition (PBC) as additional prediction
information. The global history length is dynamically adjusted between 18 and 48 bits and the
local history length between 1 and 16 bits, as in [Jim05, Gel07a, Gel07b]. In both schemes local
and global branch histories together with the PBC value are used as inputs for the selected
perceptron in order to generate a prediction. The three indexes used within the weight selection
mechanism are obtained through a hash function that uses three prime numbers, as follows
[Jim04]:

Predicting Unbiased Branches

22

 () () ()[] NWiPCPCindex i
i
GH mod1289381660509511387 1 ⋅⊕⋅⊕⋅= − (4.1)

 () ()[] NWjPCindex j
LH mod1289381511387 ⋅⊕⋅= (4.2)

 () ()[] NWkPCindexk
PBC mod1289381511387 ⋅⊕⋅= (4.3)

where GHlengthi ,1= , LHlengthj ,1= , PBClengthLHlengthLHlengthk ++= ,1 (PBClength is
32 in our case), and NW is the total number of weights (parameter varied in our simulations
between 8590 and 30713). PCi-1 represents the previous (i-1)th branch’s PC, belonging to the path
of the current branch. Consequently, a certain prediction is generated using
(PBClengthLHlengthGHlength ++) number of selected weights. These weights were selected
from a table containing NW weights. The first two relations were used according to Jimenez’s
simulator proposals [Jim04] while the third one was introduced by us, according to the new
introduced PBC information.

4.2.3.1 The Piecewise Linear Branch Predictor Using Global PBC Value

Figure 4.7 presents the scheme of the perceptron-based branch predictor that is using as
additional prediction information the global previous branch condition (PBC). The lower part of
the branch address (PC) selects a perceptron in the table of perceptrons and a local history
register in the local branch history table.

PC

Selected Perceptron

Selected LHR

Local Branch
History Table

Prediction

LH

Table of
Perceptrons

GHR

GH

PBC

PBCPC

Selected Perceptron

Selected LHR

Local Branch
History Table

Prediction

LH

Table of
Perceptrons

GHRGHR

GH

PBCPBC

PBC

Figure 4.7. Perceptron-based branch predictor using the global PBC value

4.2.3.2 The Piecewise Linear Branch Predictor Using Local PBC Value

Figure 4.8 presents a possible scheme of the perceptron-based branch predictor that is using as
prediction information local (per-address) previous branch condition (PBC). The Local Branch
History Table maintains for each branch its Local History (LH) and its the Previous Branch
Condition (PBC) value.

Predicting Unbiased Branches

23

PC

Table of
Perceptrons

Selected Perceptron

LH & PBC

Local Branch
History Table

GHR

Prediction

LH & PBC GHPC

Table of
Perceptrons

Selected Perceptron

LH & PBC

Local Branch
History Table

GHR

Prediction

LH & PBC GH

Figure 4.8. Perceptron-based branch predictor using the local PBC value

4.3. Experimental Results

The perceptron and our branch difference predictors were implemented by extending the sim-
bpred simulator provided in SimpleSim-3.0 [Sim]. We also include the implementation of the
unbiased branch selection mechanism and, thus, the predictors can be evaluated on unbiased
branches, too. We have evaluated our predictors on SPEC 2000 benchmarks, especially those
that indicated a high percentage of unbiased branches [Gel06a, Vin06].

4.3.1. Evaluating State-of-the-Art Branch Predictors

We showed that the best state of the art branch predictors [CBP04, CBP06] are obtaining very
low prediction accuracies on unbiased branches, at average about 70% [Gel07b, Gel07c]. The
same predictors are predicting a “normal” branch with accuracies ranging between 95% and
99%. These predictors are usually hybrid: Markovian, PPM-based, and neural. The unbiased
branches cannot be accurately predicted even with the actual most powerful branch predictors.
This fact is perfectly normal taking into account that the problem consists in better representing
the unbiased branches in a new efficient feature space rather in finding better prediction
structures.

77.30%

60%

65%

70%

75%

80%

85%

bzip gzip mcf parser twolf Average

SPEC 2000 Benchmarks

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Local PPM
Global-Local PPM
Multiple Markov
Perceptron
Piecewise
Frankenpredictor
O-GEHL

Figure 4.9. Branch prediction accuracies obtained using the perceptron-based predictors, the O-GEHL

predictor and the PPM-based predictors, only on unbiased branches

Predicting Unbiased Branches

24

As Figure 4.9 shows, the highest average prediction accuracy on the unbiased branches, of
77.30%, was provided by the idealized piecewise linear branch predictor [Jim05]. This low
prediction rate is understandable taking into account that even a neural predictor cannot
effectively learn unbiased branches. As a comparison, the same predictor obtained far better
average prediction accuracy, of 94.92%, on all branches.

4.3.2. Evaluating PBC-Based Branch Predictors

We evaluated our modified GAg, PAg and piecewise linear branch predictor on unbiased
branches, using the global PBC value as additional prediction information. For the piecewise
linear branch predictor we increased the number of weights from 8590 upto 30713, the higher
weights number being justified by the long additional information.

With the modified piecewise linear branch predictor we obtained a prediction accuracy of
78.30% opposite to those obtained with the modified GAg, 69.87% and the modified PAg,
73.75%. This gain was probably obtained because both the modified GAg and PAg predictors
use a hashing between PBC value and global/local branch history, while the modified piecewise
linear branch predictor uses the branch history and PBC value without hashing (by
concatenating them).

Figure 4.10 presents the prediction accuracies obtained on all branches and on the unbiased
branches with our best proposed and implemented predictor: the idealized piecewise linear
branch predictor using the global PBC value as additional prediction information. The first two
bars represent the prediction accuracies on all branches and on unbiased branches, obtained with
the idealized piecewise linear branch predictor (PW). The rest of the bars were obtained using
the PBC value (32 bits) as additional prediction information, varying the number of weights
(from 8590 up to 30713).

94.92%
95.45%

77.30% 78.30%

75%

80%

85%

90%

95%

PW_8
59

0w

PW_P
BC_8

59
0w

PW_P
BC_1

25
30

w

PW_P
BC_1

57
20

w

PW_P
BC_2

05
73

w

PW_P
BC_3

07
13

w

Different size perceptron-based predictors

Pr
ed

ic
tio

n
A

cc
ur

ac
y

all_branches
unbiased

Figure 4.10. Average prediction accuracies obtained with piecewise linear branch predictor on unbiased
branches versus all branches, using the global PBC value as additional prediction information

Analyzing comparatively the results presented in Figures 4.9 and 4.10 it can be observed how the
PBC value determines the improvement of unbiased branch prediction accuracy, overcoming
with at least 1% the best state of the art predictor’s performance. Even if the improvement seems
less significant, it is very clear how this small percentage contributes to the global prediction
accuracy (value that overcomes with more than 0.53% the best state of the art predictor’s
performance).

25

5. Better Understanding Unbiased Branches Using
Random Degrees

As we stated out in the previous chapter, the unbiased branches behavior is practically
unpredictable. Why this? Are these special branches unpredictable due to some relevant
information misses or are they “random”? However, they were obtained by compiling some
deterministic programs; therefore they were not randomly generated. But... what is random?
During this chapter we try to understand random strings of symbols from a mathematical point of
view in order to practically propose some concrete metrics characterizing them. These metrics
could help us to better understand and analyze the unbiased branches behavior and their potential
predictability.

A pragmatic aim consists in finding some deterministic hidden information that could
reduce the unbiased branches’ entropy. This is extremely difficult at least from two reasons: first,
due to the enormous complexity of the benchmarks’ dynamic behavior and, second, due to the
fact that the simulated object code obviously has far less semantics comparing with the HLL
program. However, we consider that our developed random degrees could indicate the chance for
uncovering this new relevant infomation. A high random degree might indicate a huge
complexity and therefore, small chances to discover the right useful information.

5.1. Random Degree Metrics for Characterizing Unbiased Branches
Behavior

This Section presents, based on our bibliographical research [Rab89, Gam99, Cor01, and Vol02],
some practical ideas proposed in [Vin08b] for characterizing sequences generated by unbiased
branches from the random degree viewpoint.

5.1.1. Random Degree Metric Based on Hidden Markov Models

New relevant information could reduce the string’s entropy and thus its random degree.
Unfortunately this information might be very difficult or even impossible to be found. As a
consequence we think it would be interesting trying to predict a sequence using HMMs like
those developed in [Rab89, Gel06c]. A HMM is a doubly embedded stochastic process with a
hidden stochastic process that can only be observed through another set of stochastic processes
that generate the sequence of observable symbols. A generic HMM is illustrated in Figure 5.1,
where qt is the hidden state at time t, Ot is the observation at time t, A is the matrix of transition
probabilities between hidden states, and B is the matrix of observation probabilities within each
hidden state.

q1 q2 q3 qT
A A A A

B B B B

O1 O2 OTO3

Hidden State Sequence (Q):

Observation Sequence (O):

q1 q2 q3 qT
AA AA AA AA

BB BB BB BB

O1 O2 OTO3

Hidden State Sequence (Q):

Observation Sequence (O):
Figure 5.1. Hidden Markov Model

Better Understanding Unbiased Branches Using Random Degrees

26

HMM predictors are very powerful adaptive stochastic models. Our hypothesis is that
HMMs could compensate relevant information miss-knowledge through its underlying stochastic
process that is not observable. HMM’s prediction accuracy might be considered as an ultimate
prediction limit. Therefore, we propose HMM prediction accuracy as another practical metric for
calculating the random degree associated with a sequence of symbols. Of course, all these
random degree metrics will be applied to our unbiased branches behaviors in order to estimate
how much random they are.

In this paragraph we present a Hidden Markov Model of order R, 1≥R , based on our work
published in [Gel06c]. There are multiple possibilities for doing this but we present here only
one we considered the most appropriate due to its simplicity. The key of our proposed model is
represented by the so-called hidden super-states, a combination of R primitive hidden states.
Therefore, the main difference, comparing with a first order HMM, consists in the fact that the
stochastic hidden Markov model is of order R instead of order one. This new model is justified
because we suppose that in some specific applications, there are longer correlations within the
hidden state model. In other words, we suppose that the next hidden state is better determined by
the current super-state rather than by the current primitive state. As it can be further seen, the
new proposed model is similar with the well-known HMM of order one, excepting the fact that
the generic primitive hidden state becomes now a generic super-state.

As we previously emphasized, the prediction accuracy of a symbols sequence provided by
a HMM predictor could define the random degree of that sequence. Obviously, it requires
modifying the number of hidden states for the HMM predictor in order to maximize the
prediction accuracy. Particularly, it is interesting to see whether this idealized powerful predictor
would successfully predict the sequences generated by unbiased branches. An affirmative answer
would mean that the relevant prediction information exists but is hard to identify it, differing
from one branch to another. Otherwise, if the answer is negative, the intrinsic random degree
(determinist chaos) of these branches would be very significant.

5.1.2. Random Degree Metric Based on Discrete Entropy

Considering a sequence S of symbols belonging to the set }...{ 21 kXXXX = , another practical
approach for characterizing the randomness of S might be based on its entropy:

0)(log)()(
1

2 ≥−= ∑
=

k

i
XiPXiPSE (5.1)

Obviously its maximum (k2log) is obtained for symbols of equal probabilities in S. Therefore,
we propose a random degree (RD) for a branch’s binary output sequence given by the formula

]log,0[)()()(2 kSESDSRD ∈⋅= (5.2)

where D(S) represents the shuffle degree (distribution index) and it was defined in formula (3.2).
A high RD value might involve a high random degree. Of course, our proposed RD(S) is not
theoretically perfect. As an example, the sequence 01010101010101... maximizes both D and E
but despite of this fact it is very deterministic and, therefore, very predictable.

5.1.3. Random Degree Metric Based on Compression Rate

The compression rate of a symbols sequence (or the space savings due to its compression),
provided by the well-known lossless compression algorithms such as Huffman and Gzip, could
represent another effective metric for characterizing the random degree of that sequence.

Huffman proposes an entropic encoding greedy algorithm, effective and very useful in
lossless compression, commonly used as final compression stage. The basic idea is to map an

Better Understanding Unbiased Branches Using Random Degrees

27

alphabet to a representation for that alphabet, composed of variable length strings, so that
symbols with a higher occurance probability have a smaller representation than those that occur
less often.

The kernel of the Gzip utility is the DEFLATE algorithm [Deu96], that represents a
combination between the LZ77 algorithm [Ziv77] (dictionary encoding technique) and the
Huffman algorithm (statistical encoding technique). The compression is performed in two
successive stages: i) the identification and replacement of duplicate strings with pointers (LZ77)
and ii) replacement of the previously obtained symbols with new, weighted symbols based on
frequency of use (Huffman).

In order to evaluate the compression rate of the sequences generated by biased and
unbiased branches behavior, we used the following two metrics:

%100⋅=
SizeCompressed
SizeedUncompressRatenCompressio (5.3)

%1001 ⋅







−=

SizeedUncompress
SizeCompressedSavingsSpace (5.4)

In our opinion, the compression rate and obviously, the space savings of sequences generated by
unbiased branches behavior should be lower than those obtained for sequences generated by
biased branches.

5.1.4. Random Degree Metric Based on Kolmogorov Complexity

The Kolmogorov-Chaitin complexity (or program size algorithmic complexity) of code sequence
that generates unbiased branches could be a useful metric for describing the random degree.
According to this metric, the length of the shortest program for a universal Turing Machine that
correctly reproduces the observed data is a measure of complexity [Kol65]. A sequence X has
Kolmogorov complexity K(X) equal to the length of the shortest program p for a (prefix)
universal Turing Machine U that produces X and then halts:

)(min)(
)(:

plXK
XpUp =

= (5.5)

where l(p) is the length of p in bits. Kolmogorov complexity identifies a sequence X as random if
)()(XKXl − is small: random sequences are those that are irreducibly complex. Thus, the

unbiased branches complexity should be higher than the other conditional branches complexity.
Nevertheless, the Kolmogorov complexity has a static nature while it tries to characterize the
dynamic behavior of a certain branch. On the other hand, this metric is the single one that
emphasizes the semantic complexity of the generator code sequence.

5.2. Evaluation Results

We selected from each benchmark strongly unbiased contexts having low polarization indexes
])565.0,501.0[)((∈SP and strongly biased contexts with high polarization indexes
])997.0,979.0[)((∈SP that were very frequently processed (hundreds of thousands instances

per a certain context). The polarization index was defined in formula (3.1). Each context has
associated a binary string representing its behavior (taken / not taken). This binary string
represents the input sequence for the HMM predictor used by us in paragraph 5.2.1. During the
paragraph 5.2.2 we calculated the random degrees associated to the same binary strings. In
paragraph 5.2.3 we calculated the compression rates corresponding to the same branches
behaviors.

Better Understanding Unbiased Branches Using Random Degrees

28

5.2.1. Random Degree Evaluation with HMMs

During this paragraph we considered a per branch local history of 64 bits. Using a longer history
significantly complicated our developed HMM predictors and grew up the computing time.
Anyway, our proposed metric is quantitatively very relevant. We evaluated prediction accuracies
on strongly unbiased branches using a HMM predictor of order one (R=1) and two (R=2) for
different numbers of hidden states (N). For the majority of the benchmarks considering two
hidden states generate the best accuracies. The average prediction accuracy obtained using the
quasi-optimal HMM (R=1, N=2) is far greater on biased contexts than on unbiased contexts.
Figure 5.2 comparatively presents, for unbiased and biased branches, the average prediction
accuracies obtained by the quasi-optimal HMM (R=1, N=2).

98.43%

65.03%

40%
50%
60%
70%
80%
90%

100%

bz
ip gc

c
gz

ip mcf

pa
rse

r
tw

olf

Ave
rag

e

SPEC 2000 Benchmarks

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Biased (R=1, N=2)
Unbiased (R=1, N=2)

Figure 5.2. Prediction accuracies using the best evaluated HMM (R=1, N=2)

There is a significant difference between the average prediction accuracy on biased branches
(98.43%) and on unbiased branches (65.03%). As far as we know, we are the first researchers
investigating HMMs as an ultimate branch prediction limit. Unfortunately even these powerful
predictors cannot accurately predict unbiased branches. This fact suggests that unbiased branches
are “intrinsic random” in some way, being generated by very complex program structures as we
will further show.

5.2.2. Random Degree Evaluation Based on Discrete Entropy

In this paragraph we considered as the random degree of a binary sequence RD(S), the product
between discrete entropy E(S) and shuffle degree D(S) associated to S. Thus,

)()()(SESDSRD ⋅= . Figure 5.3 shows statistical results concerning the random degree of the
biased and unbiased binary sequences obtained through the previously exposed methodology.

9.16%

40.00%

0%
10%
20%
30%
40%
50%
60%
70%

gzip gcc mcf parser bzip2 twolf Average

SPEC 2000 Benchmarks

R
an

do
m

 D
eg

re
e

RD Biased
RD Unbiased

Figure 5.3. The random degree of biased and unbiased branches

Better Understanding Unbiased Branches Using Random Degrees

29

Since our initial supposition was that biased branch sequences should have a lower random
degree, the simulation results confirm that the considered RD(S) metric represents a good
measure for random degree of binary sequences. A random degree around 40% shows that
respective unbiased branch is difficult or, practically, even impossible to be accurately predicted.

5.2.3. Random Degree Evaluation Based on Compression Rate

Further we transformed into extended ASCII files the binary behavior sequences generated by
unbiased and biased branches, obtained through the methodology exposed in paragraph 5.2. We
grouped 8-bit sequences and generated the corresponding ASCII codes. We compressed these
files using the Gzip utility [Gzip] and an own developed application that implements the
Huffman encoding [Cor01].

We based our statistics on two commonly used metrics in data compression, presented in
paragraph 5.1.3. In Figure 5.4, we illustrate the space savings obtained by compressing biased
and unbiased branches using the previously described algorithms (Gzip and Huffman).

90.37%

83.78%

19.15%

5.52%

-10%

10%

30%

50%

70%

90%

gzip gcc mcf

parse
r

bzip
2

tw
olf

Aver
age

SPEC 2000 Benchmarks

Sp
ac

e
Sa

vi
ng

s Gzip-Biased

Huffman-Biased

Gzip-Unbiased

Huffman-Unbiased

Figure 5.4. Space savings using the Gzip and Huffman algorithms

From the previous chart we can extract the following conclusions: first, the space savings
obtained through unbiased branches compression (19.15% with Gzip) are significantly lower
than those obtained through biased branches compression (90.37% with Gzip). The second
conclusion refers to the ascendancy of the Gzip algorithm toward the Huffman algorithm that is
understandable taking into account that the Huffman encoding represents the final stage of the
Gzip compression. However, it can be observed that the space saving on the twolf benchmark
becomes negative (-0.29%) even if the Gzip compression algorithm is used. The LZ77
algorithm’s influence is almost inexistent leading to the conclusion that is impossible to find
many repetitive patterns. Actually, we obtained similar results in [Gel07b], where we have
shown that using some hybrid Markov predictors, the unbiased branches prediction accuracy is
very low.

Since the Huffman encoding is very effective for strings characterized by low entropy
symbols, the negative values of space savings on four SPEC benchmarks also illustrates the lack
of repetitive pattern from unbiased sequences and the impossibility to predict them with higher
accuracy using Markov predictors. The negative compression is caused by the necessity to store
the encoding and decoding information in addition to the encoded sequence (header that contains
the mapping of each distinct symbol from the input sequence into the new result symbol).

Better Understanding Unbiased Branches Using Random Degrees

30

5.2.4. Random Degree Evaluation Based on Kolmogorov Complexity

First, we focused on the most important unbiased branch from the Perm benchmark (having
PC=58) that exhibits an unpredictable behavior even if its context length is very long (53 bits of
global history). Actually, the percentage of unbiased branches (1.53%) from the whole Perm
program is exclusively due to the branch from PC=58.

We developed a particular fast path-based perceptron (FPBP) predictor [Rad07] with a
global history length of 53 bits and 100 entries. FPBP predicted the branch 58, in its unbiased
contexts, with 65.91% accuracy. The number of FPBP mispredictions was 286. The complete
PPM predictor exploits the recursive character of Perm benchmark. The prediction accuracy
(PA) obtained by our developed PPM using a global context length of 500 bits and a search
pattern of 30 bits, on the branch 58, is 94.30%. As far as this solution is unfeasible for hardware
implementation, we tried a simplified PPM, but the result was dissatisfactory (PA=79.85%). The
global prediction accuracy provided by the complete PPM was 98.41%, lower than that
generated by the FPBP predictor (99.04%). Actually, from 869 PPM mispredictions, the branch
58 generates 287. Thus, we can conclude that both PPM and FPBP predictors do not succeed to
accurately predict an unbiased branch. The high prediction accuracy (94.30%) on the branch 58
provided by the PPM is actually centered on the whole behavior of the branch and not only on its
unbiased context.

As we have already pointed out, the length of the shortest program for a universal Turing
machine that correctly reproduces the observed data is a measure of complexity [Gam99]. Thus,
analyzing the behavior of the branch 58 from the Kolmogorov complexity perspective (we noted
it K(58)), it can be observed that the minimal length of machine-code that generates this
unbiased branch is equal with the Permute routine length (measured in instructions). This
happens because, in order to reach the branch 58, the Permute routine should completely execute
at least once (due to recursive call). Thus, K(58)=42 HSA instructions or 8 C instructions.

Among the other conditional branches only one (PC=35) proved to be unbiased for shorter
global history length (≤32 bits). However, increasing the global history length to 53 bits the
branch 35 became fully biased, and, therefore predictable. Analyzing the Kolmogorov
complexity of branch 35 we calculated K(35)=12 HSA instructions or 3 C instructions. It
involves that K(35)<K(58). This happens because the test of the branch 35 does not require the
complete execution of the Permute routine. Therefore, the complexity of the code sequence that
generates the unbiased branch (58) induces a determinist chaos, frequently occurred in many
science domains. In addition, based on the analysis of many integer recursive benchmarks we
have reasons to believe that recurrence combined with some certain conditional branches will
generate branches with unbiased behavior and thus with high Kolmogorov complexity.

31

6. Exploiting Selective Instruction Reuse and Value
Prediction in a Superscalar Architecture

In the previous chapters we have shown that unbiased branches cannot be accurately predicted
irrespective of the prediction information type used in the state-of-the-art branch predictors
[Vin06, Gel07b]. Furthermore, the behavior sequences generated by these difficult branches are
characterized by high random degrees. Since the overall performance of modern superscalar
processors is seriously affected by misprediction recovery, these difficult branches represent a
source of important performance penalties. As we pointed out in [Gel06b], 28.68% of branches
are dependent on long-latency instructions (critical Loads, Multiply, Division), and 5.61% are
unbiased and dependent on a previously committed long-latency instruction. Such hard-to-
predict branches that depend on critical Loads (with miss in the L2 data cache) occur in pointer
chasing applications based on linked list traversal:

while (node) // Branch
node = node next // Load

Since the branch from the above example depends on the Load, a branch misprediction cannot be
solved until the Load returns the value. If the Load has a high L2 cache miss rate, the
misprediction penalties of the branch will have significant impact on the overall performance.
For example, the average misprediction penalty of such a branch, measured as the latency
between fetching the branch instruction and resolving the misprediction, is about 540 cycles,
considering a L2 cache miss penalty of 300 cycles [Gao08]. Thus, the forementioned
dependences involve high-penalty mispredictions becoming serious performance obstacles and
causing significant performance degradation in executing instructions from wrong paths.
Therefore, the negative impact of branches, and especially of unbiased branches, over global
performance should be seriously attenuated by anticipating the results of long-latency
instructions, including critical Loads. On the other hand, hiding instructions long latencies in a
pipelined superscalar processor represents an important challenge itself. Therefore, in this
chapter we present based on [Gel08b, Vin05a] some original anticipatory methods developed for
superscalar architectures.

6.1. Anticipating Long-Latency Instructions Results

Our main objective is to develop a superscalar architecture that selectively anticipates the values
produced by high-latency instructions. We will focus on Multiply, Division and Loads with miss
in the L1 data cache. The reusability degree of Mul and Div instructions, measured with an
unlimited Reuse Table, was 28.9% on the integer benchmarks and 61.9% on the floating-point
benchmarks [Gel08a]. These instructions would be solved by a Dynamic Instruction Reuse
scheme. The reusability degree of Load values was 77.4% on the integer benchmarks and 76.4%
on the floating-point benchmarks [Gel08a]. However, an additional Reuse Buffer for Load Value
(Data) Reuse is not necessary, because a similar reuse mechanism is already provided by the
existing L1 and L2 data caches. Therefore, the Load instructions with miss in the L1 data cache
(selective approach) would be solved through value prediction.

Exploiting Selective Instruction Reuse and Value Prediction in a Superscalar Architecture

32

6.1.1. Selective Dynamic Instruction Reuse

For the Mul and Div instructions we will use the Sv reuse scheme. The information about
instructions is maintained in a direct mapped Reuse Buffer (RB). The RB is accessed during the
issue stage, because most of the Mul/Div instructions found in the RB during the dispatch stage
do not have their operands ready (91.5% on the integer benchmarks and 64.6% on the floating-
point benchmarks). An additional RB access in the dispatch stage does not have sense due to the
insignificant expected performance gain obtained with supplementary costs. Each RB entry has
the following fields: Tag (the higher part of the PC), SV1 and SV2 (the source values of the
Mul/Div instruction), Result (the output value of the Mul/Div instruction). Since we do not reuse
Loads with this scheme, the Address and Mem Valid fields used in [Sod97] are unnecessary. In
this way, our implemented structure is simpler and more cost effective (from hardware budget
and power consumption point of view) than the initial scheme proposed by Sodani and Sohi.

Sv Reuse Buffer (RB)

PC of MUL / DIV

Tag SV1 SV2 Result

Sv Reuse Buffer (RB)

PC of MUL / DIV

Tag SV1 SV2 Result

Figure 6.1. Reuse scheme for Mul & Div instructions

If a certain Mul/Div instruction is found in the RB, a reuse test is generated. If the actual
operand values, taken from the ROB, match the SV1 and SV2 fields from the selected RB entry,
the instruction is not sent to a functional unit, its result value being already available for
dependent instructions. Every non-reused Mul/Div instruction updates the RB in the commit
stage: writes the tag, the source values and the result into the corresponding RB entry. From the
power consumption point of view, the Reuse Buffer was modeled as a cache array structure
using the same power models as the other array structures are using. Obviously, the main benefit
of reusing long-latency instructions consists in unlocking dependent instructions (see Figure 6.2).
In Figures 6.2, 6.4 and 6.7, all stages except the Execute stage are a single cycle length; the
Execute stage has variable length, depending upon the latency of the executing instruction.

Fetch Decode Issue Execute Commit

RBLookup (PC, V1, V2) Result (if hit)

Fetch Decode Issue Execute Commit

RBLookup (PC, V1, V2) Result (if hit)

Figure 6.2. Pipeline with Reuse Buffer (RB)

We also detected trivial operations implementing a technique first introduced in [Ric93] by
Richardson. We considered the following operations: V*0, V*1, 0/V, V/1 and V/V. A simple
hardware scheme for detecting trivial computations and selecting the result is presented in
[Gol07] and consists in comparators for the input operands and selectors for the write-back. If
during the dispatch stage, a Mul instruction is detected with an operand value of 0 or 1, the result
is provided by the detector, avoiding the functional unit allocation and execution. In the same
manner, if a Div instruction is detected with the first operand being 0, the second operand 1, or

Exploiting Selective Instruction Reuse and Value Prediction in a Superscalar Architecture

33

with identical operands, the result is provided by the detector being thus available at the end of
the dispatch stage. The Reuse Buffer is accessed during the issue stage for the reuse test only if
the Mul/Div operation is not detected in the dispatch stage as being trivial.

6.1.2. Selective Load Value Prediction

We will integrate into our architecture a simple Last Value Predictor used only for Loads with
miss in the L1 data cache (selective approach). In this way, the implemented structure is more
efficiently used; the collisions number will be lower against the approach that predicts all Load
instructions, having tables of the same size. The information about Load instructions is
maintained in a direct mapped Load Value Prediction Table (LVPT). The LVPT is accessed
during the issue stage, only if the current Load instruction involves a miss in the L1 data cache
(critical Load). Each LVPT entry has the following fields: Tag (the higher part of the PC),
Counter (a 2-bit saturating confidence counter with two unpredictable and two predictable
states), and Value (the Load instruction’s result).

Load Value Prediction
Table (LVPT)

PC of Load with miss
in L1 Data Cache

Tag Counter Value

Load Value Prediction
Table (LVPT)

PC of Load with miss
in L1 Data Cache

Tag Counter Value

Figure 6.3. The Last Value Predictor architecture

In the case of a hit in the LVPT, the corresponding Counter is evaluated. If the confidence
counter is in an unpredictable state, the Load is executed without prediction. Otherwise the Value
from the selected LVPT entry is speculatively forwarded to the dependent instructions. In the
commit stage, when the real value is available, in the case of misprediction, a recovery is
necessary in order to squash speculative results and selectively re-execute the dependent
instructions with the correct values (see Figure 6.4). We considered in our simulations a value
prediction latency of one cycle and, in the misprediction case, a recovery taking 7 cycles.

Fetch Decode Issue Execute Commit

LVPTIf Load with miss
in L1 Data Cache

Predicted Value

Misprediction Recovery

Fetch Decode Issue Execute Commit

LVPTIf Load with miss
in L1 Data Cache

Predicted Value

Fetch Decode Issue Execute Commit

LVPTIf Load with miss
in L1 Data Cache

Predicted Value

Misprediction Recovery

Figure 6.4. Pipeline with Load Value Predictor

During the commit stage, every critical Load updates the LVPT: only the Counter field in
the case of correct prediction or the Value and the Counter fields in the case of misprediction. In
the case of miss in the LVPT, the Tag and the Value are inserted into the selected entry, and the
Counter is reset (strongly unpredictable state).

Exploiting Selective Instruction Reuse and Value Prediction in a Superscalar Architecture

34

6.1.3. Experimental Results

We developed a cycle-accurate execution driven simulator derived from the M-SIM simulator
[Sha05] supporting the unmodified, statically linked Alpha AXP binaries as well as the power
estimation as supplied by the Wattch framework [Bro00]. M-SIM extends the SimpleScalar
toolset [Bur97] with accurate models of the pipeline structures, including explicit register
renaming, and support for the concurrent execution of multiple threads. We modified M-SIM to
incorporate our superscalar architecture with selective instruction reuse and value prediction in
order to measure the relative IPC speedup and relative energy-delay product gain when the
results of long-latency instructions are anticipated. For the relative IPC speedup calculation we
used the following formula:

%100⋅
−

=
base

baseimproved

IPC
IPCIPC

SpeedupIPC (6.1)

where baseIPC and improvedIPC are the instructions executed per cycle with the baseline and
improved architectures, respectively.

The power consumption measurements are generated using an 80 nm CMOS technology.
The detailed power modeling methodology, used in the simulator, is presented in [Bro00]. The
dynamic power consumption in CMOS microprocessors is defined as:

faVCP ddd ⋅⋅⋅= 2 (6.2)

where C is the capacitance, generated using Cacti [Shi01], Vdd is the supply voltage, and f is the
clock frequency. Vdd and f depend on the assumed process technology. The activity factor a
indicates how often clock ticks lead to switching activity on average. The power consumption of
the modeled units highly depends on the internal capacitances of the circuits. From the
capacitance point of view, there are three categories of architectural structures: array structures,
content-associate memories, and complex logic blocks. The first two categories are used to
model the caches, branch predictors, the reorder buffer, the register renaming table, and the
register file, while the last category is used to model functional units.

For the energy measurements, we used the Energy-Delay Product, a widely used metric
[Gon96, Bro00, Gol07]:

2IPC
PowerTotalEDP = (6.3)

The Energy-Delay Product (EDP) represents the processor’s total power, divided by the squared
IPC. In other words, the EDP is the energy consumption relative to the processor’s global
performance (IPC). The EDP Gain represents the relative energy-delay product improvement.
After each architectural improvement we determined the EDP Gain based on:

%100⋅
−

=
base

improvedbase

EDP
EDPEDP

GainEDP (6.4)

where, baseEDP is the energy-delay product of the baseline architecture, whereas improvedEDP is
the energy-delay product of the improved architecture. Thus, a positive value of the EDP Gain
means an improvement of the relative energy consumption.

We evaluated seven integer benchmarks (bzip, gcc, gzip, mcf, parser, twolf, vpr) and six
floating-point benchmarks (applu, equake, galgel, lucas, mesa, mgrid). Although the RB
structure dissipates additional dynamic power, reusing long-latency instructions increases the
IPC and therefore lowers the relative energy consumption (see Figure 6.5). We determined the
energy-delay product for the architecture without RB and for the architecture with RB of

Exploiting Selective Instruction Reuse and Value Prediction in a Superscalar Architecture

35

different sizes, based on relation (6.3). The EDP Gain represents the relative energy-delay
product improvement determined based on relation (6.4) for each RB size.

0.0%
0.5%
1.0%
1.5%
2.0%
2.5%
3.0%
3.5%
4.0%
4.5%

16 32 64 128 256 512 1024 2048

RB entries

EDP Gain
IPC Speedup

Figure 6.5. Relative IPC speedup and relative energy-delay product gain on the SPEC 2000 floating-

point benchmarks with RB and Trivial Operation Detection

The speedup is insignificant in the case of the integer benchmarks, due to the significantly lower
number of Mul and Div instructions. Consequently, the energy-delay product is better only for
RB sizes between 16 and 128 entries, but the improvement is insignificant. These results are in
concordance with Citron [Cit02] who also remarked the poor evaluation results (reuse degrees
and speedups) obtained on the SPEC’95 integer benchmarks. Therefore a significant benefit of
Mul/Div instructions reuse is achieved only for floating-point applications.

Figure 6.6 presents the relative IPC speedup and the relative energy-delay product
improvement obtained with Mul/Div Reuse Buffer of 1024 entries and Trivial Operation
Detector for the Mul and Div instructions and with Last Value Predictor for critical Load
instructions. We determined the energy-delay product for the architecture without RB and LVPT
and for the architecture with an RB of 1024 entries and LVPTs of different sizes, based on
relation (6.3). The EDP Gain represents the relative energy-delay product improvement
determined based on relation (6.4) for each LVPT size. As it can be observed, the optimal LVPT
size is 1024.

0%
5%

10%
15%
20%
25%
30%
35%
40%

16 32 64 12
8

25
6

51
2

10
24

20
48

LVPT entries

FP - EDP Gain
FP - IPC Speedup
INT - EDP Gain
INT - IPC Speedup

Figure 6.6. Relative IPC speedup and relative energy-delay product gain with a Reuse Buffer of 1024

entries, the Trivial Operation Detector, and the Load Value Predictor

Exploiting Selective Instruction Reuse and Value Prediction in a Superscalar Architecture

36

Both IPC speedup and EDP gain are significantly higher on the floating-point benchmarks
compared to the integer benchmarks (see Figure 6.6). This difference occurs because the number
of critical Loads is more than twice higher in the floating-point benchmarks. The difference is
further accentuated by the percentage of predicted critical Loads (classified as predictable by
LVPT confidence counters) which is 85% on the floating-point benchmarks and only 40% on the
integer benchmarks [Gel08a]. Finally, the difference is also slightly increased by the higher
prediction accuracy obtained on the floating-point benchmarks.

The selective instruction reuse approach proposed by Golander and Weiss in [Gol07]
achieves an average IPC speedup of 2.5% on the SPEC 2000 integer benchmarks, of 5.9% on the
floating point benchmarks, and an improvement in energy-delay product of 4.80% and 11.85%,
respectively. In comparison, our improved superscalar architecture achieves an average IPC
speedup of 3.5% on the integer SPEC benchmarks, 23.6% on the SPEC floating-point
benchmarks, and an improvement in energy-delay product of 6.2% and 34.5%, respectively.

6.2. Contributions to Dynamic Value Prediction: CPU Context
Prediction

The main aim of this section consists in focalizing dynamic value prediction to the CPU context
[Vin05a, Vin05b]. The idea of attaching a value predictor to each CPU register (register-centric
predictor) instead of an instruction or memory-centric predictor is original and could involve
new architectural techniques for improving performance and reducing the hardware cost of
speculative microarchitectures. In an earlier work [Flo02], Florea et al. performed several
experiments to evaluate the value locality exhibited by MIPS general-purpose integer registers.
The results obtained on some special registers ($at, $sp, $fp, $ra) were quite remarkable (≈90%
value locality degree) leading to the conclusion that value prediction might be successfully
applied at least on these favorable registers.

Whether the prediction process has been instruction (producer) or memory-centered with
great complexity and timing costs, by implementing the well known value prediction schemes
[Lip96a, Saz99] centered on the CPU’s registers will reduce the hardware cost. However, there
are some disadvantages. Addressing the prediction tables with the instructions’ destination
register name (during the decode stage) instead of the Program Counter will cause some
interference. However, we have proved that, with a sufficiently large history a hybrid predictor
could eliminate this problem and achieve very high prediction accuracy (85.44% at average on
eight MIPS registers using SPEC’95 benchmarks and 73.52% on 16 MIPS registers using SPEC
2000 benchmarks). The main benefit of the proposed VP technique consists in unlocking the
subsequent dependent instructions.

6.2.1. Register Value Predictors

Statistical results based on simulation have proved that commonly used programs are
characterized by strong value repetitions [Lip96a, Sod00]. The main causes for this phenomenon
are: data and code redundancy, program constants, and the compiler routines that resolve virtual
function calls, memory aliases, etc. The register value locality is frequently met in programs and
shows the number of times each register is written with a value that was previously seen in the
same register and dividing by the total number of dynamic instructions having this register as
their destination field [Flo02, Gel03].

As we observed in [Vin05a, Gel03], the value locality on some registers is remarkable high
(90%), and this predictability naturally leads us to the idea of implementing value prediction on
these favorable registers. Dynamic value prediction on registers represents a new technique that
allows the speculative execution of the read after write dependent instructions by predicting the

Exploiting Selective Instruction Reuse and Value Prediction in a Superscalar Architecture

37

values of the destination registers during second half of the instruction’s decode stage (see
Figure 6.7). The Value Prediction Table (VPT) is accessed with the name of the destination
register. The register’s next value is predicted based on the last values belonging to that register.
In the case of a valid prediction, the VPT will forward the predicted value to the subsequent
corresponding RAW dependent instructions. After execution, when the real value is known, it is
compared with the predicted value. If the value was correctly predicted the critical path might be
reduced. In the case of a misprediction the speculatively executed dependent instructions are re-
issued for execution (recovery).

Fetch Decode Issue Execute Commit

RVPRdest Predicted Value

Misprediction Recovery

Fetch Decode Issue Execute Commit

RVPRdest Predicted Value

Misprediction Recovery

Figure 6.7. The implementation of the register value prediction mechanism in the pipeline structure of a

general microarchitecture

In [Vin05a, Gel03] we developed and simulated several different basic value predictors,
such as the last value predictor, the stride value predictor, the context-based predictor and hybrid
value predictors to capture certain type of value predictabilities from the SPEC benchmarks and
to obtain higher prediction accuracy. All these predictors were adapted to our proposed
prediction model.

6.2.1.1. Last Value Predictors

The last value predictors (see Figure 6.8) predict the next value as the same as the last value
stored in the corresponding register. Exploiting the correlation between register names and the
values stored in those registers will decrease instruction latencies. Each register used in the
prediction mechanism has an entry in the VHT. In this way the number of entries in the
prediction table is the same as the number of logical registers.

State Val

Predicted value

Value History
 Table
 (VHT)

index
Rdest

Figure 6.8. Last value predictor

Exploiting Selective Instruction Reuse and Value Prediction in a Superscalar Architecture

38

Each entry of the prediction table has its own automaton in the State field (a 2-bit
saturating confidence counter with two unpredictable and two predictable states). The last value
from the Val field is predicted only if the automaton is in a predictable state. Obviously, it is
necessary to verify the value generated by the value history table (VHT). The automaton’s state
will be changed according to the comparison between the predicted and actual values. The Val
field is also updated.

6.2.1.2. Stride Predictors

In this case, considering that 1−nv and 2−nv are the most recent values, the new value nv will be
calculated using the recurrence formula:)(211 −−− −+= nnnn vvvv , where)(21 −− − nn vv is the stride
of the sequence. Figure 6.9 shows the structure of this predictor.

State Val Str1 Str2

+
Predicted
 value

Value History
 Table
 (VHT)

index
Rdest

Figure 6.9. Stride predictor

The Str1 and Str2 fields keep the last two strides. Each time a register is used as
destination, its current stride is computed: ValVStr −= , where V is the actual value of that
register and Val is its last value stored in the VHT. The automaton is incremented if the
prediction is correct otherwise it is decremented. If 21 StrStr = , the predicted value is calculated
adding the stride Str2 to the value stored in the VHT’s Val field. If the automaton is in the
predictable state, the prediction is furnished.

6.2.1.3. Context-Based Predictors

The context-based predictors predict the value that will be stored in a register based on the last
values stored in that register. A context is a finite sequence of values with repeated appearance as
in a Markov chain. The Prediction by Partial Matching (PPM) algorithm has been already
presented in Section 4.1. A PPM-based predictor furnishes the value that followed the considered
context with the highest frequency. Obviously, the predicted value depends on the context
length. A longer context frequently drives to higher prediction accuracy but sometimes it can
behave as noise.

Exploiting Selective Instruction Reuse and Value Prediction in a Superscalar Architecture

39

State V1 V2

Predicted
 value

Value History
 Table
 (VHT)

index
Rdest

V4V3

PPM

Figure 6.10. Structure of a context-based PPM predictor

Figure 6.10 shows the structure of the context-based predictor. Each entry from the VHT
has an associated automaton that is incremented when the prediction is correct and is
decremented in the case of a misprediction. The fields V1, V2, …, V4 store the last four values
associated with each register (considering that the predictor works with a history of four values).
If the automaton is in the predictable state, it predicts the value that follows the context with the
highest frequency.

6.2.1.4. Hybrid Predictors

It has been shown that a single type of predictor does not offer the best results. Some types of
value sequences generated in programs are better predicted with a certain predictor, and others,
with another type of predictor [Wan97]. Therefore, it is natural to consider the idea of hybrid
prediction: two or more value predictors working together dynamically in the prediction process.
Figure 6.11 shows a hybrid predictor composed of a context-based PPM predictor and a stride
predictor. The context-based predictor always has priority, as in [Wan97]. In this way the value
generated by the stride predictor is only used if the context-based predictor cannot generate a
prediction.

State Str1 LRU V3

Predicted
 value

Value History
 Table
 (VHT)

indexRdest

V2V1 V4

PPM

MUX 4:1

+

MUX
 2:1

Str2

Figure 6.11. Hybrid predictor (PPM & stride)

Exploiting Selective Instruction Reuse and Value Prediction in a Superscalar Architecture

40

Figure 6.12 presents the hybrid predictor composed of a 2-Level predictor and a Stride predictor
adapted for register-centric prediction. It has the same functionality as the instruction-centric
approach proposed by Wang and Franklin in [Wan97], but it is indexed with the destination
register name instead of the PC. This fixed prioritization used in Figures 6.11 and 6.12 seems not
to be optimal. Probably a dynamic prioritization based on some confidences should be better (the
predictor having the highest confidence degree will have priority).

LRU Data Values

Value History
Table
(VHT)

VHP

MUX
4:1

Predicted
Value

C0 C1 C2 C3

Pattern History
Table
(PHT)

MAX

2

2p

State Stride

MUX
4:1 +

MUX
2:1

indexRdest

LRU Data Values

Value History
Table
(VHT)

VHP

MUX
4:1

MUX
4:1

Predicted
Value

Predicted
Value

C0 C1 C2 C3

Pattern History
Table
(PHT)

MAX

22

2p

State Stride

MUX
4:1

MUX
4:1 +

MUX
2:1

MUX
2:1

indexRdest
indexRdest

Figure 6.12. Hybrid predictor (two-level & stride) with fixed prioritization

LRU Data Values

Value History
Table
(VHT)

VHP

MUX
4:1

Predicted
Value

C0 C1 C2 C3

Pattern History
Table
(PHT)

MAX

2

2p

Stride

MUX
4:1 +

MUX
2:1

indexRdest

C2Lev CStr LRU Data Values

Value History
Table
(VHT)

VHP

MUX
4:1

MUX
4:1

Predicted
Value

Predicted
Value

C0 C1 C2 C3

Pattern History
Table
(PHT)

MAX

22

2p

Stride

MUX
4:1

MUX
4:1 +

MUX
2:1

MUX
2:1

indexRdest
indexRdest

C2Lev CStr

Figure 6.13. Hybrid predictor (two-level & stride) with adaptive prioritization

Exploiting Selective Instruction Reuse and Value Prediction in a Superscalar Architecture

41

The adaptive hybrid predictor presented in Figure 6.13 uses a saturating confidence counter for
each component predictor: C2Lev for the 2-Level predictor and CStr for the Stride predictor.
Thus, it dynamically selects the most confident predictor. Other adaptive neural metapredictors
have been proposed and evaluated in [Vin04a], but with less efficiency mainly due to the
complexity of the backpropagation learning algorithm. Some simplified perceptron-based
metapredictors might be more efficient and feasible for hardware implementation

6.2.2. Experimental Results

We developed a cycle-accurate execution driven simulator derived from the sim-outorder
simulator of the SimpleScalar toolset [Sim]. The baseline superscalar processor supports out-of-
order instruction issue and execution. We modified it to incorporate our proposed register value
predictors. In this paragraph, we are focusing only on the predictable registers which have
prediction accuracy higher than a certain threshold (60% and 80%, respectively), measured using
the PPM-based hybrid predictor on the SPEC benchmarks. The registers having a prediction
accuracy higher than 60% are: 1, 5, 7–13, 15, 18–20, 22, 29–31 on SPEC’95, and, 1, 6–8, 10–16,
18–25, 29–31 on SPEC 2000. The statistic results on the SPEC’95 benchmarks exhibit a using
degree of 19.36% for these 17 registers. This means that 19.36% of instructions use one of these
registers as a destination. The equivalent average result on SPEC 2000 is 13.24% using 22
general purpose registers.

In Figures 6.14 and 6.15 we compared the previously presented value prediction
techniques: last value prediction (Figure 6.8), stride prediction (Figure 6.9), PPM prediction
(Figure 6.10) and PPM-based hybrid prediction (Figure 6.11). We used in the prediction process
only the 17 favorable registers on the SPEC’95 benchmarks and 22 favorable registers on the
SPEC 2000 benchmarks. The PPM and the hybrid predictors use a history of 256 values and a
search pattern of 4 values.

8.59% 18.65%

71.19%

78.25%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

co
mpre

ss9
5

hy
dro

2d
ijp

eg pe
rl

sw
im

wav
e5 li go

Ave
rag

e

SPEC'95 Benchmarks

Pr
ed

ic
tio

n
A

cc
ur

ac
y

[%
]

LastValue
Stride
PPM
PPM-Stride

Figure 6.14. Prediction accuracy using 17 favorable registers (PA>60%) on the SPEC’95 benchmarks

These results (see Figures 6.14 and 6.15) represent the global prediction accuracies of the
favorable registers for each benchmark. The hybrid predictor synergy can be observed. It
involves an average prediction accuracy of 78.25% on the SPEC’95 benchmarks and 72.93% on
the SPEC 2000 benchmarks.

Exploiting Selective Instruction Reuse and Value Prediction in a Superscalar Architecture

42

11.46%

20.40%

62.84%

72.93%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Bzip gz
ip cc1

cra
fty mcf

pa
rse

r
tw

olf

Ave
rag

e

SPEC 2000 Benchmarks

Pr
ed

ic
tio

n
A

cc
ur

ac
y

[%
]

LastValue
Stride
PPM
PPM-Stride

Figure 6.15. Prediction accuracy using 22 favorable registers (PA>60%) on the SPEC 2000 benchmarks

Now we will try a more elitist selection considering only the registers with prediction
accuracy higher than 80% (see Figures 6.16 and 6.17). There are 8 registers that fulfill this
condition (1, 10–12, 18, 29–31) on the SPEC’95 benchmarks and 16 registers (1, 8, 11–15, 20–
25, 29–31) on the SPEC 2000 benchmarks (registers 1, 29–31 are included even if they do not
fulfill this condition because they exhibit a high degree of value locality [Vin05a] and they also
have special functions). The global using rate of these registers is 10.58% on the SPEC’95
benchmarks, and 9.01% on the SPEC 2000 benchmarks.

8.43% 17.48%

77.04%

85.44%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

co
mpre

ss9
5

hy
dro

2d
ijp

eg pe
rl

sw
im

wav
e5 li go

Ave
rag

e

SPEC'95 Benchmarks

Pr
ed

ic
tio

n
A

cc
ur

ac
y

[%
]

LastValue
Stride
PPM
PPM-Stride

Figure 6.16. Prediction accuracy using 8 favorable registers (PA>80%) on the SPEC’95 benchmarks

12.37%
19.72%

70.24%

73.52%

0%

20%

40%

60%

80%

100%

bz
ip

gz
ip cc1

cra
fty mcf

pa
rse

r
tw

olf

Ave
rag

e

SPEC 2000 Benchmarks

Pr
ed

ic
tio

n
ac

cu
ra

cy
 [%

]

LastValue
Stride
PPM
PPM-Stride

Figure 6.17. Prediction accuracy using 16 favorable registers (PA>80%) on the SPEC 2000 benchmarks

Exploiting Selective Instruction Reuse and Value Prediction in a Superscalar Architecture

43

Figures 6.16 and 6.17 emphasize, for each benchmark, the global prediction accuracy
obtained with the implemented predictors using 8 and 16 selected registers, respectively
(threshold over 80%, according to the previous explanations). Each bar represents the prediction
accuracy for a certain benchmark, measured by counting the number of times when prediction is
accurate for any of the favorable registers and dividing by the total number when these registers
are written. The simulation results offered by the last value predictor are relatively close to the
stride predictor’s results. The best average prediction accuracy was obtained with the hybrid
predictor 85.44%, which was quite remarkable (on some benchmarks over 96%). Considering an
8-issue out-of-order superscalar processor simulations show that register centric value prediction
produce average speedups of 17.30% for the SPECint95 benchmarks, respectively of 13.58% for
the SPECint2000 benchmarks.

Finally, in Figures 6.18 and 6.19 we have compared the PPM-based hybrid predictor
(PPM-Stride) with the two-level-based hybrid predictors: 2Lev-Stride with fixed prioritization
(presented in Figure 6.12) and 2Lev+Stride with adaptive prioritization (presented in Figure
6.13), both using a history of 32 values and a pattern of 4 values.

0

10

20

30

40

50

60

70

80

90

100

R
01

R
02

R
03

R
04

R
05

R
06

R
07

R
08

R
09

R
10

R
11

R
12

R
13

R
14

R
15

R
16

R
17

R
18

R
19

R
20

R
21

R
22

R
23

R
24

R
25

R
29

R
30

R
31

A
ve

ra
ge

MIPS Registers

Pr
ed

ic
tio

n
A

cc
ur

ac
y

[%
]

2Lev-Stride

2Lev+Stride

PPM-Stride

Figure 6.18. Comparing the hybrid predictors on the SPEC’95 benchmarks

0

10

20

30

40

50

60

70

80

90

100

R
01

R
02

R
03

R
04

R
05

R
06

R
07

R
08

R
09

R
10

R
11

R
12

R
13

R
14

R
15

R
16

R
17

R
18

R
19

R
20

R
21

R
22

R
23

R
24

R
25

R
29

R
30

R
31

A
ve

ra
ge

MIPS Registers

Pr
ed

ic
tio

n
A

cc
ur

ac
y

[%
]

2Lev-Stride

2Lev+Stride

PPM-Stride

Figure 6.19. Comparing the hybrid predictors on the SPEC 2000 benchmarks

Figures 6.18 and 6.19 show that the hybrid predictor with adaptive prioritization composed of a
two-level and a stride predictor is comparable to or even outperforms the PPM-based hybrid
predictor, at significantly lower implementation cost and complexity.

44

7. Enhancing the Simultaneous Multithreading
Paradigm Through Selective Instruction Reuse and

Value Prediction

In the previous chapter we improved a superscalar microarchitecture with selective instruction
reuse and value prediction techniques focalized on long-latency instructions. We obtained
significant IPC speedups and energy-delay product gains, proving the necessity of these
techniques for higher instruction-level parallelism. A very important question is: would these
techniques improve even multithreading architectures? Additionally a multithreaded processor
would naturally hide the long instructions latencies, including the memory-wall, and also some
of the branches’ problems. This chapter answers the question by evaluating a simultaneous
multithreaded architecture enhanced with selective instruction reuse and value prediction to
anticipate the results of long-latency instructions.

7.1. Selective Instruction Reuse and Value Prediction in SMT
Architectures

As a final objective of our research, we quantified the impact of our developed Selective
Instruction Reuse and Load Value Prediction techniques in a simultaneous multithreaded
architecture (SMT) that involves per thread Reuse Buffers and LVP tables [Vin08a].

We developed a cycle-accurate execution driven simulator derived from the M-SIM
simulator [Sha05] supporting the unmodified, statically linked Alpha AXP binaries as well as the
power estimation as supplied by the Wattch framework [Bro00]. M-SIM supports single
threaded execution (superscalar mode) as well as the multithreaded mode in which multiple
threads of control are executed simultaneously, according to the Simultaneous Multithreaded
(SMT) model [Egg 97]. In the SMT mode, some processor structures (i.e. issue queue, physical
register files, functional units, caches) are shared among the threads, and others (rename tables,
ROBs, Load/Store Queues, branch predictors) are private to each thread. Figure 7.1 presents a
SMT architecture enhanced with our selective instruction reuse and value prediction methods
proposed in Section 6.1.

Fetch
Unit

Branch
Predictor PC I-Cache Decode Issue

Queue
Rename

Table

Physical
Register

File

ROB

LVPT

Functional
Units

LSQ

D-Cache

RB

Fetch
Unit

Fetch
Unit

Branch
Predictor
Branch

Predictor
Branch

Predictor PCPC I-CacheI-Cache Decode Issue
Queue
Issue

Queue
Rename

Table
Rename

Table
Rename

Table

Physical
Register

File

Physical
Register

File

ROB

LVPT

Functional
Units

LSQ

Functional
Units

Functional
Units

LSQLSQ

D-CacheD-Cache

RBRB

Figure 7.1. SMT architecture enhanced with selective instruction reuse and value prediction

Threads maintain separate PC counters, but share the fetch unit and I-Cache. Threads also
share the available bandwidth in the front end, including fetch, decode and renaming. The M-

Enhancing the Simultaneous Multithreading Paradigm Through Selective Instruction Reuse and Value Prediction

45

SIM implements the well known ICOUNT fetch policy, by default, fetching from up to two
threads per cycle. The M-SIM has implemented separate branch predictors per thread, which was
shown in [Ram03] as providing the best performance for multithreaded processors. The Reorder
Buffers (ROB) as well as our Reuse Buffers (RB) and Load Value Prediction Tables (LVPT) are
private. Each thread maintains its own rename table because it has its own set of architectural
registers. After renaming, instructions from all threads are dispatched into the shared Issue
Queue. In the Issue Queue, instructions from all threads participate in instruction wakeup and
compete for the issue bandwidth in selection. Instructions that are selected for issue continue to
register file access. There are separate integer and floating-point physical register files, both
being shared among threads. After register file access is complete, instructions begin execution
on the functional units, which are also shared. Loads and Stores access the shared data cache. In
order to maintain the correct ordering of memory accesses, the Load/Store Queue (LSQ) is used.
The M-SIM uses separate LSQs per thread, so that an unresolved address from one thread does
not prevent Loads in other threads from issuing. After execution, instructions write back to the
register files. Commitment is done in order for each thread.

7.2. Experimental Results

For the superscalar architecture we evaluated seven integer benchmarks (bzip, gcc, gzip, mcf,
parser, twolf, vpr) and six floating-point benchmarks (applu, equake, galgel, lucas, mesa,
mgrid). In SMT mode, the M-SIM runs multiple benchmarks as different threads in parallel.
Therefore, we combined benchmarks into groups of 2, 3 or 6 depending on the simulated SMT
architecture. Thus, we used {bzip, gcc}, {gzip, parser}, {twolf, vpr}, {applu, equake}, {galgel,
lucas}, {mesa, mgrid} for our 2-way SMT, {bzip, gcc, gzip}, {parser, twolf, vpr}, {applu,
equake, galgel}, {lucas, mesa, mgrid} for the 3-way SMT, and {bzip, gcc, gzip, parser, twolf,
vpr}, {applu, equake, galgel, lucas, mesa, mgrid} for the 6-way SMT.

The dynamic power consumption measurements are generated using an 80 nm CMOS
technology:

faVCP ddd ⋅⋅⋅= 2 (7.1)

where C is the capacitance, generated using Cacti [Shi01], Vdd is the supply voltage, and f is the
clock frequency. Vdd and f depend on the assumed process technology. The activity factor a
indicates how often clock ticks lead to switching activity on average. For the energy
measurements, we used the Energy-Delay Product, a widely used metric [Gon96, Bro00, Gol07]:

2IPC
PowerTotalEDP = (7.2)

The Energy-Delay Product (EDP) represents the processor’s total power, divided by the squared
IPC.

We measured the IPC and the dynamic power consumption of the proposed SMT
architecture by varying the number of threads. Figures 7.2 and 7.3 present the IPC obtained by
evaluating our developed superscalar and SMT architectures with and without Reuse Buffer and
Load Value Predictor. According to our previous results obtained with the enhanced superscalar
architecture (presented in paragraph 6.1.3), we optimally sized the RB and the LVPT to 1024
entries. Figures 7.2 and 7.3 show that the RB and LVPT structures improve the IPC on all
evaluated architectural configurations (superscalar and SMT). As far as concern floating-point
benchmarks, the highest improvement was obtained with one thread, and as the number of
threads grows, the IPC improvement becomes lower (see Figure 7.3).

Enhancing the Simultaneous Multithreading Paradigm Through Selective Instruction Reuse and Value Prediction

46

1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4

1 2 3 6

Threads
IP

C SMT

SMT w ith RB & LVPT

Figure 7.2. IPC obtained with and without RB & LVPT on the integer SPEC 2000 benchmarks

2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0

1 2 3 6

Threads

IP
C SMT

SMT with RB & LVPT

Figure 7.3. IPC obtained with and without RB & LVPT on the floating-point SPEC 2000 benchmarks

With fewer threads, the ten shared functional units are underused and therefore the
selective instruction reuse and value prediction techniques have an important improvement
potential. With a higher number of threads, the same ten functional units are highly used by the
SMT engine, thus both the instruction reuse and value prediction mechanisms becoming less
important. Therefore, especially on floating-point benchmarks, with six threads we obtained the
best IPC but the lowest relative IPC speedup (see Figures 7.3 and 7.4).

Finally, we evaluated, for different number of threads, the IPC speedup and the EDP gain
of a SMT architecture enhanced with Selective Instruction Reuse and Value Prediction against a
classical SMT architecture. The IPC speedups obtained with our superscalar (one thread) and
SMT architecture (2, 3 and 6 threads) are presented in Figure 7.4, whereas Figure 7.5 presents
the EDP gains achieved with the same architectures.

0%

5%

10%

15%

20%

25%

1 2 3 6

Threads

IP
C

 S
pe

ed
up

FP

INT

Figure 7.4. Relative IPC speedup (enhanced SMT vs. classical SMT) by varying the number of threads

Enhancing the Simultaneous Multithreading Paradigm Through Selective Instruction Reuse and Value Prediction

47

0%
5%

10%
15%
20%
25%
30%
35%
40%

1 2 3 6

Threads
ED

P
G

ai
n

FP

INT

Figure 7.5. Relative energy-delay product gain (enhanced SMT vs. classical SMT) for different number

of threads

As Figures 7.4 and 7.5 depict, the RB and LVPT structures achieved IPC speedups and
EDP gains on all the simulated configurations. The best improvements on the integer
benchmarks have been obtained with 2 threads: an IPC speedup of 5.95% and an EDP gain of
10.44%. Although, on the floating-point benchmarks, we obtained the highest improvements
with the enhanced (LVP+Reuse) superscalar architecture, the SMT with 3 threads also provides
an important IPC speedup of 16.51% and an EDP gain of 25.94%. Analyzing Figures 7.2 and 7.3
we can observe the advantage of SMT architectures against the superscalar architecture
irrespective these are enhanced or not with selective instruction reuse and value prediction
mechanisms.

48

8. Conclusions and Further Work

This chapter presents some quantitative and qualitative conclusions regarding the important
experimental results obtained within this thesis and emphasizes some possible further work
directions. The main contributions of this work can be summarized as follows:

• A systematic methodology of identifying difficult-to-predict branches: we have
shown that unbiased branches are hard to predict if their outcomes, in the considered
prediction contexts (branch address, local or global branch history, path), tend to
chaotically shuffle between taken and not taken. We identified through laborious
simulations these difficult-to-predict branches in the SPEC 2000 benchmarks, and
partially solved them through context length extension. However, about 6% of branches
could not be solved even with the longest evaluated correlation information (28 bits),
their polarization degrees remaining still unacceptably low (less than 0.95). Despite some
branches are path-correlated, a global branch history of more than 12 bits approximates
very well the longer path information. Thus, the path is useful only in the case of short
contexts, for longer contexts its gain being insignificant. In other words, a sufficiently
long branch history might be viewed as a good “compression” of the most complete path
information.

• Dedicated predictors designed to improve the prediction accuracy of unbiased
branches: we concluded that current state-of-the-art branch predictors correlate either
insufficient information or wrong information in the prediction of unbiased branches.
Even one of the most effective predictors, the idealized piecewise linear branch predictor
developed by Jiménez, only achieved a prediction accuracy of 77.3% on the unbiased
branches, leading us to consider alternative approaches. Therefore, we improved several
state-of-the-art branch predictors with additional prediction information. Thus, we
developed and evaluated some PPM-based value predictors that are using a compressed
branch condition history whose digits were -1, 0, or 1, depending on the sign of the
difference between the operand values implied in each considered past branch.
Unfortunately, even these idealistic predictors, able to exploit the correlation between
branch outcome and branch condition history, could not improve the predictability of
unbiased branches. We have analyzed comparatively the percentages of unbiased
branches obtained using the global history, the global history concatenated with the path,
and the global history concatenated with a new prediction information, namely, the
previous branch condition (PBC) represented as a 32-bit difference between the operand
values of the previous dynamic branch. The evaluations showed that the previous branch
condition is more efficient than the path information: it decreased the percentage of
unbiased branches for all the evaluated context lengths. Therefore we additionally used
local (per-address) or global PBC value, hashed together with the local/global branch
history, integrated in some conventional branch predictors like the GAg and PAg, and in
some state-of-the-art neural branch predictors. The piecewise linear branch predictor
improved with the global PBC value was the most efficient, according to our evaluations.
Nevertheless, even this powerful predictor achieved a modest 78.3% average prediction
accuracy on the unbiased branches, whereas its global average prediction accuracy was
95.45% overcoming the original piecewise linear branch predictor (the best state of the
art branch predictor) with 0.53%. However, this modified piecewise linear branch
predictor significantly outperformed the modified GAg and PAg predictors. This gain
was probably obtained because both the improved GAg and PAg predictors used a
hashing between the PBC value and the global/local branch history, whereas the modified

Conclusions and Further Work

49

piecewise linear branch predictor used the branch history and PBC value without
hashing (by concatenating them). Since the impact of unbiased branches significantly
restricts the global accuracy, predicting them still represents a hard challenge for
computer architects. This means that accurate prediction of unbiased branches remains an
open problem and such branches will continue to limit the ceiling of dynamic branch
prediction.

• Random degree metrics developed to characterize the randomness of sequences
produced by unbiased branches: at this moment there is not a universally accepted
paradigm for effectively defining random strings of symbols. Not surprisingly,
understanding randomness is closely related with strong mathematical concepts like
computability and algorithms, information theory and complexity, actual infinites theory,
etc. The problem is therefore open and of great interests in many fields of science. We
showed that unbiased branches could be understandable in more depth using this
interdisciplinary methodological frame. We developed four metrics that are defining the
random degree of a string of symbols. These metrics are based on: HMM-based
predictability, discrete entropy, compression rate and Kolmogorov complexity associated
to the code sequence that generates unbiased branches. The proposed random degree
metrics could practically help the computer architect to better understand if a certain
branch predictor should be improved. All these four developed metrics are converging at
the same point. They are showing how much “intrinsic randomness” a string of symbols
and, particularly, the sequences produced by unbiased branches contain. If some difficult-
to-predict branches are not intrinsic random with our metrics, according to our
experience, their prediction accuracy could be further improved by the researcher.
Unfortunately, if these branches are intrinsic random, the answer is a pessimistic one,
generating a strong limitation in Computer Architecture. Since the future applications
complexity will increase (object oriented programs, design patterns, complex project
management, virtual machines, etc.), we expect that also the number and therefore the
influence of unbiased branches will further increase.

• Selective anticipatory methods integrated into superscalar architectures: our
statistics show that about 28% of branches are dependent on long-latency instructions.
Moreover, 5.61% of branches are unbiased and depend on long-latency instructions, too.
These dependences involve high-penalty mispredictions becoming serious performance
obstacles and causing significant performance degradation in executing instructions from
wrong paths. Therefore, the negative impact of (unbiased) branches over global
performance should be seriously attenuated by anticipating the results of long-latency
instructions, including critical Loads. On the other hand, hiding long execution latencies
in a pipelined superscalar processor represents an important challenge itself. Therefore,
we developed a superscalar architecture that selectively anticipates the values produced
by high-latency instructions. We have focused on Multiply, Division and Loads with
miss in L1 data cache, implementing a Dynamic Instruction Reuse scheme for the
Mul/Div instructions and a simple Last Value Predictor for the critical Load instructions.
Our improved architecture achieved an average IPC speedup of 3.5% on the integer
SPEC 2000 benchmarks, of 23.6% on the floating-point benchmarks, and an
improvement in energy-delay product of 6.2% and 34.5%, respectively. Actually, this
lower energy consumption shows the efficiency of our anticipatory techniques in a
superscalar architecture. We have also demonstrated that there is a dynamic correlation
between the names of the destination registers and the values stored in these registers.
Therefore we extended dynamic value prediction by introducing the register-centric
prediction concept instead of instruction-centric prediction. This register-centric approach
is advantageous because fewer predictors are needed, thus reducing complexity and costs.
We developed several different basic value predictors, such as the last value predictor,
the stride value predictor, context-based predictors and hybrid value predictors to capture

Conclusions and Further Work

50

certain type of value predictabilities from the SPECint95 and the SPECint2000
benchmarks. All these predictors were adapted to our proposed prediction model. The
evaluations showed that the hybrid predictors have best exploited the value locality
concept. Moreover, the hybrid predictor with counter-based adaptive prioritization
composed of a two-level and a stride predictor outperformed the PPM-based hybrid
predictor, at significantly lower implementation cost and complexity. Considering an 8-
issue out-of-order superscalar processor, the register centric value prediction achieves
average speedups of 17.30% on the SPECint95 benchmarks and 13.58% on the
SPECint2000 benchmarks.

• Selective anticipatory methods integrated into simultaneous multithreaded
architectures: after we have shown the utility of selectively anticipating long-latency
instructions in superscalar architectures, it was natural to analyze the efficiency of these
methods in multithreaded environments. Thus, we have studied the impact of dynamic
instruction reuse and value prediction, applied selectively on Mul/Div instructions and on
critical Loads, in a Simultaneous Multithreaded (SMT) architecture. We implemented
private Mul/Div Reuse Buffers (RB) and Load Value Prediction Tables (LVPT) for each
thread. Our simulations performed on the SPEC 2000 benchmarks showed higher IPC on
all evaluated SMT configurations, when the RB and LVPT structures were used. With
fewer threads, the shared functional units are underused and therefore the selective
instruction reuse and value prediction techniques have an important improvement
potential. However, as the number of threads grows the IPC speedup decreases, because
the shared functional units are better exploited due to the higher thread-level parallelism
(TLP) and therefore the RB and LVPT structures become less important. We measured
the highest IPC of 2.29 on the integer and 2.88 on the floating-point benchmarks with our
six-threaded enhanced SMT architecture. However, the best improvements on the SPEC
integer applications have been obtained with 2 threads: an IPC speedup of 5.95% and an
EDP gain of 10.44%. Although, on the SPEC floating-point programs, we obtained the
highest improvements with the enhanced superscalar architecture, the SMT with 3
threads also provides an important IPC speedup of 16.51% and an EDP gain of 25.94%.
As a conclusion, applying some well-known anticipatory techniques selectively on long-
latency instructions provides serious performance gain and significantly reduces energy
consumption in superscalar and even in multithreaded architectures.

Finally, we highlight some interesting research topics that need to be further investigated in
the future. Since accurate prediction of unbiased branches still remains an open problem, we
consider that the use of more prediction contexts (some relevant HLL code information) is
required to further improve prediction accuracies. Perhaps an alternative mechanism might be to
hand-shake scheduler support with dynamic branch prediction. The idea of the scheduler would
be to remove as many branch instructions (especially unbiased branches) from the static code as
possible and leave the remaining branches to be dynamically predicted. Yet another alternative
could be to pursue the concepts of micro-threading where small fragments of code (e.g. both
branch paths) are executed concurrently and the branch problem is no longer a major concern. It
would be also useful to quantify the unbiased branch ceiling in multicore architectures. Also,
understanding and exploring instruction reuse and value prediction benefits in a multicore
architecture might be another very important challenge.

51

References

[Aam03] Aamer M., Lux K., Mistry R., Mulholland B., Efficiency of Pre-Computed Branches,
Technical Report, University of Pennsylvania, USA, 2003.

[Akk03a] Akkary H., Rajwar R., Srinivasan S.T., Checkpoint Processing and Recovery:
Towards Scalable Large Instruction Window Processors, Proceedings of the 36th International
Symposium on Microarchitecture, ACM Press, 2003.

[Akk03b] Akkary H., Rajwar R., Srinivasan S.T., Checkpoint Processing and Recovery: An
Efficient, Scalable Alternative to Reorder Buffers, IEEE Micro, Vol. 23, No. 6, 2003.

[Ara01] Aragón J.L., González J., García J.M., González A., Selective Branch Prediction
Reversal by Correlating with Data Values and Control Flow, Proceedings of the International
Conference on Computer Design: VLSI in Computers & Processors, 2001.

[Bar08] Barre J., Rochange C., Sainrat P., A Predictable Simultaneous Multithreading Scheme
for Hard Real-Time, The 21st International Conference on Architecture of Computing Systems,
TU Dresden, Germany, February 2008.

[Bau72] Baum L.E., An Inequality and Associated Maximization Technique in Statistical
Estimation for Probabilistic Functions of Markov Processes, Inequalities, Vol. 3, 1972.

[Bir01] Birney E., Hidden Markov Models in Biological Sequence Analysis, IBM Journal of
Research and Development, Volume 45, Numbers 3/4, 2001.

[Bro00] Brooks D., Tiwari V., Martonosi M., Wattch: A Framework for Architectural-Level
Power Analysis and Optimizations, Proceedings of the 27th International Symposium on
Computer Architecture, Vancouver, June 2000.

[Bur97] Burger D., Austin T., The SimpleScalar Tool Set, Version 2.0,
(ftp://ftp.cs.wisc.edu/pub/sohi/Code/simplescalar), Technical Report, University of Wisconsin,
Madison, USA, June 1997.

[Cal99] Calder B., Reinman G. and Tullsen D., Selective Value Prediction, Proceedings of the
26th International Symposium on Computer Architecture, pages 64-74, May 1999.

[CBP04] The 1st JILP Championship Branch Prediction Competition (CBP-1),
http://www.jilp.org/cbp, 2004.

[CBP06] The 2nd Journal of Instruction-Level Parallelism Championship Branch Prediction
Competition (CBP-2), Orlando, Florida, USA, (2006), http://camino.rutgers.edu/cbp2/.

[Cha94] Chang P.-Y., Hao E., Yeh T.-Y., Patt Y.N., Branch Classification: a New Mechanism
for Improving Branch Predictor Performance, Proceedings of the 27th International Symposium
on Microarchitecture, San Jose, California, 1994.

[Cha02a] Chang M.-C., Chou Y.-W., Branch Prediction using Both Global and Local Branch
History Information, IEE Proceedings – Computer and Digital Techniques, Vol. 149, No. 2,
United Kingdom, March 2002.

[Cha02b] Chappell R., Tseng F., Yoaz A., Patt Y., Difficult-Path Branch Prediction Using
Subordinate Microthreads, The 29th Annual International Symposia on Computer Architecture,
Alaska, USA, May 2002.

References

52

[Cha03] Chaver D., Pinuel L., Prieto M., Tirado F., Huang M., Branch Prediction On Demand:
An Energy-Efficient Solution, Proceedings of the International Symposium on Low Power
Electronics and Design, pages 390-395, Seoul, Korea, August 2003.

[Cha08] Chang S.C., Li W.Y.H., Kuo Y.J., Chung C.P., Early Load: Hiding Load Latency in
Deep Pipeline Processor, Proceedings of the Asia-Pacific Computer Systems Architecture
Conference, Taiwan, August 2008.

[Che03] Chen L., Dropsho S., Albonesi D.H., Dynamic Data Dependence Tracking and its
Application to Branch Prediction, The 9th International Symposium on High-Performance
Computer Architecture, February 2003.

[Cit02] Citron D., Feitelson D., Revisiting Instruction Level Reuse, Proceedings of the Workshop
on Duplicating, Deconstructing, and Debunking (WDDD), May 2002.

[Con04] Constantinides K., Sazeides Y., A Hardware-Based Method for Dynamically Detecting
Instruction-Isomorphism and its Application to Branch Prediction, The 2nd Value Prediction and
Value-Based Optimization Workshop, Boston, Massachusetts, October 2004.

[Cor01] Cormen T.H., Leiserson C.E., Rivest R.L., Stein C., Introduction to Algorithms, Section
16.3, pages 385–392, Second Edition, MIT Press and McGraw-Hill, 2001

[Cri02] Cristal A., Valero M., Gonzalez A., Llosa J., Large Virtual ROBs by Processor
Checkpointing, Technical Report, Computer Architecture Department, University Politècnica of
Catalunya, Barcelona, Spain, 2002.

[Cri04a] Cristal A., Ortega D., Llosa J., Valero M., Out-of-order Commit Processors,
Proceedings of the 10th International Symposium on High Performance Computer Architecture,
February 2004.

[Cri04b] Cristal A., Santana O., Valero M., Towards Kilo-instruction Processors, ACM
Transactions on Architecture and Code Optimization, Vol. 1, No. 4, December 2004.

[Cri05] Cristal A., Santana O., Cazorla F., Galluzzi M., Ramírez T., Pericàs M., Valero M., Kilo-
instruction Processors: Overcoming the Memory Wall, IEEE Micro, Vol. 25, No. 3, 2005.

[Des02] Desmet V., Goeman B., Bosschere K., Independent Hashing as Confidence Mechanism
for Value Predictors in Microprocessors, Proceedings of the 8th International EuroPar
Conference on Parallel Processing, Augsburg, Germany, August 2002.

[Des04] Desmet V., Eeckhout L., De Bosschere K., Evaluation of the Gini-index for Studying
Branch Prediction Features. Proceedings of the 6th International Conference on Computing
Anticipatory Systems (CASYS), AIP Conference Proceedings, Vol. 718, 2004.

[Des06] Desmet V., On the Systematic Design of Cost-Effective Branch Prediction, PhD Thesis,
Ghent University, Belgium, 2006.

[Deu96] Deutsch P., DEFLATE Compressed Data Format Specification version 1.3, Aladdin
Enterprises, Network Working Group, RFC 1951, pages 1-15, 1996.

[Ega03] Egan C., Steven G., Quick P., Anguera R., Vintan L., Two-Level Branch Prediction
using Neural Networks, Journal of Systems Architecture, Vol. 49, Elsevier, December 2003.

[Egg97] Eggers S. Emer J., Levy H., Lo J., Stamm R., Tullsen D., Simultaneous Multithreading:
A Platform for Next-Generation Processors, IEEE Micro, Vol 17, Issue 5, September 1997.

[Fal04] Falcón A., Stark J., Ramirez A., Lai K., Valero M., Prophet/Critic Hybrid Branch
Prediction, Proceedings of the 31st Annual International Symposium on Computer Architecture,
München, Germany, June 2004.

[Fer04] Fern A., Givan R., Falsafi B.,Vijaykumar T.N., Dynamic Feature Selection for
Hardware Prediction, Journal of Systems Architecture, Vol. XX, Elsevier, 2004.

References

53

[Flo02] Florea A., Vintan L., Sima D., Understanding Value Prediction through Complex
Simulations, Proceedings of the 5th International Conference on Technical Informatics,
University “Politehnica” of Timisoara, Romania, October, 2002.

[Flo04] Florea A., Vintan L., Mihu Z.I., Understanding and Predicting Indirect Branch
Behavior, Studies in Informatics and Control, Vol.13, No. 1, National Institute for Research and
Development in Informatics, Bucharest, March 2004.

[Flo05a] Florea A., The dynamic values prediction in the next generation microprocessors,
MatrixRom Publishing House, Bucharest, 2005.

[Flo05b] Florea A., Vintan L., Advanced techniques for improving indirect branch prediction
accuracy, Proceedings of 19th European Conference on Modelling and Simulation, Riga, Latvia,
June 2005.

[Flo06] Florea A., Gellert A., Memory Wall — A Critical Factor in Current High-Performance
Microprocessors, Science and Supercomputing in Europe, ISBN 978-88-86037-19-8, Barcelona,
Spain, 2006.

[Flo07a] Florea A., Radu C., Calborean H., Crapciu A., Gellert A., Vintan L., Designing an
Advanced Simulator for Unbiased Branches Prediction, Proceedings of 9th International
Symposium on Automatic Control and Computer Science, ISSN 1843-665X, Iasi, 2007.

[Flo07b] Florea A., Radu C., Calborean H., Crapciu A., Gellert A., Vintan L., Understanding
and Predicting Unbiased Branches in General-Purpose Applications, Bulletin of the Polytechnic
Institute of Iasi, Tom LIII (LVII), Fasc. 1-4, Section IV, ISSN 1220-2169, 2007.

[Gab98] Gabbay F., Mendelsohn A., Using Value Prediction To Increase The Power Of
Speculative Execution Hardware, ACM Transactions On Computer Systems, Vol 16, Nr. 3,
1998.

[Gam99] Gammerman A., Vovk V., Kolmogorov Complexity: Sources, Theories and
Applications, The Computer Journal, Vol.42, No. 4, pages 252-255, 1999.

[Gao06] Gao H., Zhou H., PMPM: Prediction by Combining Multiple Partial Matches, The 2nd
Journal of Instruction-Level Parallelism Championship Branch Prediction Competition (CBP-2),
Orlando, Florida, USA, December 2006.

[Gao08] Gao H., Ma Y., Dimitrov M., Zhou H., Address-Branch Correlation: A Novel Locality
for Long-Latency Hard-to-Predict Branches, Proceedings of the 14th International Symposium
on High-Performance Computer Architecture, Salt Lake City, Utah, February 2008.

[Gel03] Gellert A., Contributions to speculative execution of instructions by dynamic register
value prediction, MSc Thesis, University “Lucian Blaga” of Sibiu, Computer Science
Department, 2003 (in Romanian, supervisor Prof. L. Vintan).

[Gel06a] Gellert A., Prediction Methods Integrated into Advanced Architectures, 1st PhD
Report, Computer Science Department, "Lucian Blaga" University of Sibiu, January 2006.

[Gel06b] Gellert A., Florea A., Finding and Solving Difficult Predictable Branches, Science and
Supercomputing in Europe, ISBN 978-88-86037-19-8, Barcelona, Spain, 2006.

[Gel06c] Gellert A., Vintan L., Person Movement Prediction Using Hidden Markov Models,
Studies in Informatics and Control, Vol. 15, No. 1, ISSN 1220-1766 (IEE INSPEC), National
Institute for Research and Development in Informatics, Bucharest, March 2006.

[Gel07a] Gellert A., Integration of Some Advanced Prediction Methods into Speculative
Computing Systems, 2nd PhD Report, Computer Science Department, "Lucian Blaga" University
of Sibiu, March 2007.

References

54

[Gel07b] Gellert A., Florea A., Vintan M., Egan C., Vintan L., Unbiased Branches: An Open
Problem, Twelfth Asia-Pacific Computer Systems Architecture Conference (ACSAC’07), Seoul,
Korea, August 2007; Lecture Notes in Computer Science, Advances in Computer Systems
Architecture, vol. 4697, pp. 16-27, ISSN 0302-9743 (Print) 1611-3349 (Online), Springer-Verlag
Berlin / Heidelberg, 2007 (ISI Thomson Journals).

[Gel07c] Gellert A., Vintan L., Florea A., A Systematic Approach to Predict Unbiased
Branches, ISBN 978-973-739-516-0, “Lucian Blaga” University Press, Sibiu, Romania, 2007
(http://webspace.ulbsibiu.ro/arpad.gellert/html/Unb_Br_Book.pdf).

[Gel08a] Gellert A., Developing and Improving the Performances of Some Predictive
Architectures, 3rd PhD Report, Computer Science Department, "Lucian Blaga" University of
Sibiu, April 2008.

[Gel08b] Gellert A., Florea A., Vintan L., Exploiting Selective Instruction Reuse and Value
Prediction in a Superscalar Architecture, Revised version submitted to Journal of Systems
Architecture, July 2008 (ISI Thomson Journals).

[Gol07] Golander A., Weiss S., Reexecution and Selective Reuse in Checkpoint Processors,
HiPEAC Journal, 2007.

[Gon96] Gonzalez R., Horowitz M., Energy Dissipation in General Purpose Microprocessors,
IEEE Journal of Solid State Circuits, Vol. 31, No. 9, September 1996.

[Gon99] González J., González A., Control-Flow Speculation through Value Prediction for
Superscalar Processors, International Conference on Parallel Architecture and Compilation
Techniques, 1999.

[Gon01] González J., González A., Control-Flow Speculation through Value Prediction, IEEE
Transactions on Computers, Vol. 50, No. 12, December 2001.

[Gzip] http://www.gzip.org/.

[Hei99a] Heil T., Smith Z., Smith J.E., Using Data Values to Predict Branches, Proceedings of
the 26th Annual International Symposium on Computer Architecture, 1999.

[Hei99b] Heil T.H., Smith Z., Smith J.E., Improving Branch Predictors by Correlating on Data
Values, Proceedings of the 32nd International Symposium on Microarchitecture, November 1999.

[Hen03] Hennessy J., Patterson D., Computer Architecture: A Quantitative Approach, Morgan
Kaufmann Publishers, Third Edition, 2003.

[Hun03] Hunt S.P., Egan C., Shafarenko A., A Simple Yet Accurate Neural Branch Predictor,
Proceedings of the IASTED International Conference on Artificial Intelligence and Application
(AIA), Malaga, Spain, September 2003.

[Jim01a] Jiménez D., Lin C., Dynamic Branch Prediction with Perceptrons, In Proceedings of
the Seventh International Symposium on High Performance Computer Architecture (HPCA-7),
January 2001.

[Jim01b] Jiménez D., Lin C., Perceptron Learning for Predicting the Behavior of Conditional
Branches, Proceedings of the INNS-IEEE International Joint Conference on Neural Networks
(IJCNN), Washington DC, July 2001.

[Jim02] Jiménez D., Lin C., Neural Methods for Dynamic Branch Prediction, ACM Transactions
on Computer Systems, Vol. 20, New York, USA, November 2002.

[Jim03a] Jiménez D., Lin C., Dynamic Branch Prediction with Perceptrons, Proceedings of the
7th International Symposium on High Performance Computer Architecture, January 2001.

[Jim03b] Jiménez D., Reconsidering Complex Branch Predictors, Proceedings of the 9th
International Symposium on High Performance Computer Architecture, February 2003.

References

55

[Jim03c] Jiménez D., Fast Path-Based Neural Branch Prediction, Proceedings of the 36th
Annual International Symposium on Microarchitecture, December 2003.

[Jim04] Jiménez D., Idealized Piecewise Linear Branch Prediction, Championship Branch
Prediction (CBP-1), 2004, http://www.jilp.org/cbp/Agenda-and-Results.htm.

[Jim05] Jiménez D., Idealized Piecewise Linear Branch Prediction, Journal of Instruction-Level
Parallelism, April 2005.

[Jos97] Joseph D., Grunwald D., Prefetching using Markov Predictors, Proceedings of the 24th
International Symposium on Computer Architecture, pages 252-263, June 1997.

[Ken07] Kennedy M., Design of Double Precision IEEE-754 Floating-Point Units, MSc Thesis,
Griffith University, March 2007.

[Kim03] Kim S., Branch Prediction using Advanced Neural Methods, Technical Report,
University of California, Berkeley, 2003.

[Kim07] Kim H., Joao J., Mutlu O., Lee C.J., Patt Y.N., Cohn R., VPC Prediction: Reducing the
Cost of Indirect Branches via Hardware-Based Dynamic Devirtualization, Proceedings of the
34th Annual International Symposium on Computer Architecture (ISCA07), San Diego, CA,
June 2007.

[Kol65] Kolmogorov A.N., Three Approaches to the Quantitative Definition of Information,
Problems of Information Transmission, 1965.

[Lep00a] Lepak K.M., Lipasti M.H., On the Value Locality of Store Instructions, Proceedings of
the 27th Annual International Symposium on Computer Architecture, Vancouver, June 2000.

[Lep00b] Lepak K.M., Lipasti M.H., Silent Stores for Free, Proceedings of the 33rd Annual
ACM/IEEE International Symposium on Microarchitecture (MICRO33), California, USA, 2000.

[Lia02] Liao C.H., Shieh J.J., Exploiting Speculative Value Reuse Using Value Prediction,
Seventh Asia-Pacific Computer Systems Architecture Conference, Melbourne, Australia,
February 2002.

[Lip96a] Lipasti M.H., Wilkerson C.B., Shen J.P., Value Locality and Load Value Prediction,
Proceedings of the 7th International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 138-147, October 1996.

[Lip96b] Lipasti M. H., Shen J.P., Exceeding the Dataflow Limit via Value Prediction,
Proceedings of the 29th Annual ACM/IEEE International Symposium on Microarchitecture,
December 1996.

[Liu03] Liu N., Lovell B.C., Gesture Classification Using Hidden Markov Models and Viterbi
Path Counting, Proceedings of the Seventh International Conference on Digital Image
Computing: Techniques and Applications, Sydney, Australia, December 2003.

[Liu08] Liu C., Gaudiot J.L., Resource Sharing Control in Simultaneous MultiThreading
Microarchitectures, Proceedings of the Asia-Pacific Computer Systems Architecture
Conference, Taiwan, August 2008.

[Loh05a] Loh G.H., Deconstructing the Frankenpredictor for Implementable Branch Predictors,
Journal of Instruction-Level Parallelism, April 2005.

[Loh05b] Loh G.H., Jiménez D., A Simple Divide-and-Conquer Approach for Neural-Class
Branch Prediction, Proceedings of the 14th International Conference on Parallel Architectures
and Compilation Techniques (PACT), St. Louis, MO, USA, September 2005.

[Loh05c] Loh G.H., Jiménez D., Reducing the Power and Complexity of Path-Based Neural
Branch Prediction, 5th Workshop on Complexity Effective Design (WCED5), Madison, WI,
USA, June 2005.

References

56

[Mah94] Mahlke S.A., Hank R.E., Bringmann R.A., Gyllenhaal J.C., Gallagher D.M., Hwu W.-
M.W., Characterizing the Impact of Predicated Execution on Branch Prediction, Proceedings of
the 27th International Symposium on Microarchitecture, San Jose, California, December 1994.

[Mar99] Marcuello P., Tubella J., González A., Value Prediction for Speculative Mutithreaded
Architectures, Proceedings of the 32nd International Symposium on Microarchitecture,
November 1999.

[Mar01] Martin M., Sorin D., Cain H., Hill M., Lipasti M., Correctly Implementing Value
Prediction in Microprocessors that Support Multithreading or Multiprocessing, Proceedings of
the 34th Annual ACM/IEEE International Symposium on Microarchitecture, Austin, Texas,
December 2001.

[McFar93] McFarling S., Combining Branch Predictors, WRL Technical Note TN-36, Digital
Equipment Corporation, June 1993.

[Mit97] Mitchell T., Machine Learning, McGraw-Hill, 1997.

[Mud96] Mudge T.N., Chen I.K., Coffey J.T., Limits to Branch Prediction, Technical Report,
Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor,
Michigan, USA, January 1996.

[Mut03] Mutlu O., Stark J., Wilkerson C., Patt Y.N., Runahead Execution: An Effective
Alternative to Large Instruction Windows, IEEE Micro, Vol. 23, No. 6, 2003.

[Mut06] Mutlu O., Kim H., Patt Y.N., Address-Value Delta (AVD) Prediction: A Hardware
Technique for Efficiently Parallelizing Dependent Cache Misses, IEEE Transactions on
Computers, Vol. 55, No. 12, December 2006.

[Nair95] Nair R., Dynamic Path-Based Branch Correlation, IEEE Proceedings of MICRO-28,
1995.

[Oan06] Oancea M, Gellert A., Florea A., Vintan L., Analyzing Branch Prediction Contexts
Influence, Advanced Computer Architecture and Compilation for Embedded Systems,
(ACACES 2006), ISBN 90 382 0981 9, pages 5-8, L’Aquila, Italy, July 2006.

[Pan92] Pan S., So K., Rahmeh J.T., Improving the Accuracy of Dynamic Branch Prediction
Using Branch Correlation, ASPLOS-V International Conference, Boston, October 1992.

[Per06] Pericàs M., Cristal A., González R., Jiménez D., Valero M., A Decoupled Kilo-
Instruction Processor, Proceedings of the 12th International Symposium on High Performance
Computer Architecture, February 2006.

[Per07] Pericàs M., Cristal A., Cazorla F., González R., Jiménez D., Valero M., A Flexible
Heterogeneous Multi-Core Architecture, Proceedings of the 16th International Conference on
Parallel Architectures and Compilation Techniques, Brasov, Romania, September 2007.

[Pet04] Petzold J., Augsburg Indoor Location Tracking Benchmarks, Technical Report 2004-9,
Institute of Computer Science, University of Augsburg, Germany, 2004,
http://www.informatik.uni-augsburg.de/skripts/techreports/.

[Rab89] Rabiner L.R., A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition, Proceedings of the IEEE, Vol 77, No. 2, February 1989.

[Rad07] Radu C., Calborean H., Crapciu A., Gellert A., Florea A., An Interactive Graphical
Trace-Driven Simulator for Teaching Branch Prediction in Computer Architecture, The 6th
EuroSim Congress on Modeling and Simulation, 2007, Ljubljana, Slovenia.

[Ram03] Ramsay M., Feucht C., Lipasti M., Exploring Efficient SMT Branch Predictor Design,
Workshop on Complexity Effective Design, 2003.

References

57

[Ram08] Ramírez T., Pajuelo A., Santana O., Valero M., Runahead Threads to Improve SMT
Performance, Proceedings of the International Symposium on High Performance Computer
Architecture, 2008.

[Red03] Redstone J., Eggers S., Levy H., Mini-threads: Increasing TLP on Small-Scale SMT
Processors, Proceedings of the Ninth International Symposium on High Performance Computer
Architecture (HPCA-9), 2003.

[Ric93] Richardson S., Exploiting trivial and redundant computation, Proceedings of the 11th
Symposium on Computer Arithmetic, July 1993.

[Rot99] Roth A., Moshovos A., Sohi G., Improving Virtual Function Call Target Prediction via
Dependence-Based Pre-Computation, Proceedings of the International Conference on
Supercomputing, 1999.

[Ryc98] Rychlik B., Faistl J., Krug B., Kurland A., Jung J., Velev M. and Shen J., Efficient and
Accurate Value Prediction Using Dynamic Classification, Technical Report, Department of
Electrical and Computer Engineering, Carnegie Mellon Univ., 1998.

[Saz97] Sazeides Y., Smith J.E., The Predictability of Data Values, Proceedings of the 30th
Annual International Symposium on Microarchitecture, December 1997.

[Saz99] Sazeides Y., An analysis of value predictability and its application to a superscalar
processor, PhD Thesis, University of Wisconsin-Madison, 1999.

[Sen04] Seng J.S., Hamerly G., Exploring Perceptron-Based Register Value Prediction, The 2nd
Value-Prediction and Value-Based Optimization Workshop (in conjunction with ASPLOS 11
Conference), Boston, USA, 2004.

[Sez02] Seznec A., Felix S., Krishnan V., Sazeides Y., Design Tradeoffs for the Alpha EV8
Conditional Branch Predictor, Proceedings of the 29th International Symposium on Computer
Architecture, Anchorage, AK, USA, May 2002.

[Sez04] Seznec A., Revisiting the Perceptron Predictor, Technical Report, IRISA, May 2004.

[Sez05] Seznec A., Genesis of the O-GEHL branch predictor, Journal of Instruction-Level
Parallelism, April 2005.

[Sez07a] Seznec A., The Idealistic GTL Predictor, Journal of Instruction-Level Parallelism, No.
9, May, 2007.

[Sez07b] Seznec A., The L-TAGE Branch Predictor, Journal of Instruction-Level Parallelism,
No. 9, May, 2007.

[Sha05] Sharkey J., Ponomarev D., Ghose K., M-SIM: A Flexible, Multithreaded Architectural
Simulation Environment, Technical Report CS-TR-05-DP01, Department of Computer Science,
State University of New York at Binghamton, October 2005.

[She03] Shen J.P., Lipasti M.H., Modern Processor Design. Fundamental of Superscalar
Processors, Beta Edition, McGraw-Hill Co, 2003.

[Shi01] Shivakumar P., Jouppi N.P., Cacti 3.0: An Integrated Timing, Power, and Area Model,
WRL Research Report, Aug 2001, USA.

[Sim] The SimpleSim Tool Set, ftp://ftp.cs.wisc.edu/pub/sohi/Code/simplescalar.

[Smi95] Smith J., Sohi G., The Microarchitecture of Superscalar Processors, Proceedings of the
IEEE, Vol. 83, December 1995.

[Smi98] Smith Z., Using Data Values to Aid Branch-Prediction, MSc Thesis, Wisconsin-
Madison, USA, December 1998.

References

58

[Sod97] Sodani A., Sohi G., Dynamic Instruction Reuse, Proceedings of the 24th Annual
International Symposium on Computer Architecture (ISCA’97), Denver, 1997.

[Sod00] Sodani A., Dynamic Instruction Reuse, PhD Thesis, University of Wisconsin-Madison,
USA, 2000.

[SPEC] SPEC 2000, The SPEC benchmark programs, http://www.spec.org.

[Spr02] Sprangle E., Carmean D., Increasing Processor Performance by Implementing Deeper
Pipelines, Proceedings of the 29th Annual International Symposium on Computer Architecture,
Anchorage, Alaska, May 2002.

[Sri06] Srinivasan R., Frachtenberg E., Lubeck O., Pakin S., Cook J., Neuro-PPM Branch
Prediction, The 2nd Journal of Instruction-Level Parallelism Championship Branch Prediction
Competition (CBP-2), Orlando, Florida, USA, December 2006.

[Sta04] Stamp M., A Revealing Introduction to Hidden Markov Models, January 2004,
http://www.cs.sjsu.edu/faculty/stamp/RUA/HMM.pdf.

[Ste96] Steven G., Collins R., A Superscalar Architecture to Exploit Instruction Level
Parallelism, Proceedings of the Euromicro Conference, Prague, 1996.

[Ste01] Steven G., Egan C., Anguera R., Vintan L., Dynamic Branch Prediction using Neural
Networks, Proceedings of International Euromicro Conference DSD ‘2001, pages 178-185,
Warsaw, Poland, September 2001.

[Sub08] Subramaniam S., Prvulovic M., Loh G., PEEP: Exploiting Predictability of Memory
Dependences in SMT Processors, International Symposium on High Performance Computer
Architecture 2008.

[Tar05] Tarjan D., Skadron K., Merging Path and GshareIndexing in Perceptron Branch
Prediction, ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September
2005.

[Tho01] Thomas R., Franklin M., Using Dataflow Based Context for Accurate Value Prediction,
Proceedings of the International Conference on Parallel Architectures and Compilation
Techniques, 2001.

[Tho03] Thomas R., Franklin M., Wilkerson C., Stark J., Improving Branch Prediction by
Dynamic Dataflow-based Identification of Correlated Branches from a Large Global History,
Proceedings of the 30th International Symposium on Computer Architecture, June 2003.

[Tho04] Thomas A., Kaeli D., Value Prediction with Perceptrons, The Second Value Prediction
and Value-Based Optimization Workshop, Boston, USA, October 2004.

[Tom67] Tomasulo R., An Efficient Algorithm for Exploiting Multiple Arithmetic Units, IBM
Journal, Vol. 11, 1967.

[Tul99] Tullsen D.M., Seng J.S., Storageless Value Prediction using Prior Register Values,
Proceedings of the 26th International Symposium on Computer Architecture, May 1999.

[Ung02] Ungerer T., Robic B., Silc J., Multithreaded Processors, The Computer Journal, Vol.
45, No. 3, 2002.

[Ung03] Ungerer T., Robic B., Silc J., A Survey of Processors with Explicit Multithreading,
ACM Computing Surveys, Vol. 35, No. 1, March 2003.

[Vin99a] Vintan L., Iridon M., Towards a High Performance Neural Branch Predictor,
Proceedings of the International Joint Conference on Neural Networks, Washington DC, USA,
July 1999.

References

59

[Vin99b] Vintan L., Egan C., Extending Correlation in Branch Prediction Schemes,
International Euromicro’99 Conference, Milano, Italy, September 1999.

[Vin00a] Vintan L., Instruction Level Parallel Architectures (in Romanian), Romanian Academy
Publishing House, Bucharest, 2000.

[Vin00b] Vintan L., Towards a Powerful Dynamic Branch Predictor, Romanian Journal of
Information Science and Technology, Romanian Academy Publishing House, Bucharest, 2000.

[Vin03] Vintan L., Sbera M., Mihu I.Z., Florea A., An Alternative to Branch Prediction: Pre-
Computed Branches, ACM SIGARCH Computer Architecture News, Vol.31, Issue 3, ACM
Press, NY, USA, June 2003.

[Vin04a] Vintan L., Gellert A., Florea A., Register value prediction using metapredictors,
Proceedings of the 8th International Symposium on Automatic Control and Computer Science,
Iasi, October 2004.

[Vin04b] Vintan L., Gellert A., Petzold J., Ungerer T., Person movement prediction using
neural networks, Technical Report 2004-10, Institute of Computer Science, University of
Augsburg, Germany, April 2004, (http://www.informatik.uniaugsburg.de/skripts/techreports/)

[Vin04c] Vintan L., Gellert A., Petzold J., Ungerer T., Person Movement Prediction Using
Neural Networks, Proceedings of the KI2004 International Workshop on Modeling and Retrieval
of Context (MRC 2004), Vol-114, ISSN 1613-0073, Ulm, Germany, September 2004.

[Vin05a] Vintan L., Florea A., Gellert A., Focalising Dynamic Value Prediction to CPU’s
Context, IEE Proceedings. Computers & Digital Techniques, Vol. 152, No. 4, Stevenage, UK,
July 2005 (ISI Thomson Journals).

[Vin05b] Vintan L., Gellert A., Florea A., Value prediction focalized on CPU registers,
Advanced Computer Architecture and Compilation for Embedded Systems, (ACACES 2005),
Academia Press, ISBN 90 382 0802 2, pages 181-184, Ghent, Belgium, July 2005.

[Vin06] Vintan L., Gellert A., Florea A., Oancea M., Egan C., Understanding Prediction Limits
through Unbiased Branches, Eleventh Asia-Pacific Computer Systems Architecture Conference
(ACSAC’06), Shanghai, China, September 2006; Lecture Notes in Computer Science, Advances
in Computer Systems Architecture, vol. 4186, pp. 480-487, ISSN 0302-9743, ISBN-13 978-3-
540-40056, Springer-Verlag Berlin / Heidelberg, 2006 (ISI Thomson Journals).

[Vin07] Vintan L., Prediction Techniques in Advanced Computing Architectures (in English),
MatrixRom Publishing House, Bucharest, 2007.

[Vin08a] Vintan L., Florea A., Gellert A., Forcing Some Architectural Ceilings of the Actual
Processor Paradigm, Invited Paper, The 3rd Conference of The Academy of Technical Sciences
from Romania (ASTR), Cluj-Napoca, November 2008.

[Vin08b] Vintan L., Florea A., Gellert A., Random Degrees of Unbiased Branches, Proceedings
of the Romanian Academy, Series A, No. 3, 2008 (ISI Thomson Journals).

[Vol02] Volchan S.B., What Is a Random Sequence?, The American Mathematical Monthly,
109, January 2002.

[Wan97] Wang K., Franklin M., Highly Accurate Data Value Prediction using Hybrid
Predictors, Proceedings of the 30th Annual ACM/IEEE International Symposium on
Microarchitecture, December 1997.

[Wan99] Wang Y., Lee S., and Yew P. Decoupling Value Prediction on Trace Processors,
Proceedings of the 6th International Symposium on High performance Computer Architecture,
1999.

References

60

[Yeh92] Yeh T.-Y., Patt Y.N., Alternative Implementations of Two-Level Adaptive Branch
Prediction, Proceedings of the 19th Annual International Symposium on Computer Architecture,
Gold Coast, Australia, May 1992.

[Yeh93] Yeh T.-Y., Patt Y.N., A Comparison of Dynamic Branch Predictors that use Two Levels
of Branch History, Proceedings of the 20th Annual International Symposium on Computer
Architecture, San Diego, California, May 1993.

[Yi06] Yi J.J., Lilja D.J., Simulation of Computer Architectures: Simulators, Benchmarks,
Methodologies and Recommendations, IEEE Transactions on Computers, Vol. 55, No. 3, pages
268-280, March 2006.

[Yok08] Yokota T., Ootsu K., Baba T., Potentials of Branch Predictors – from Entropy
Viewpoints, Proceedings of the 21st International Conference on Architecture of Computing
Systems, TU Dresden, Germany, February 2008.

[Yoo04] Yoon B., Vaidynathan P.P., RNA Secondary Structure Prediction Using Context-
Sensitive Hidden Markov Models, Proceedings of International Workshop on Biomedical
Circuits and Systems, Singapore, December 2004.

[Zho03] Zhou H., Flanagan J., Conte T., Detecting Global Stride Locality in Value Streams,
Proceedings of the 30th Annual International Symposium on Computer Architecture, San Diego,
California, June 2003.

[Ziv77] Ziv J., Lempel A., A Universal Algorithm for Sequential Data Compression, IEEE
Transactions on Information Theory, Vol. IT-23, No. 3, pages 337-343, 1977.

