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Rezumat 

Paralelismul la nivelul instrucţiunilor este limitat de dependenţele existente între instrucţiuni, iar 
pentru eliminarea lor microprocesoarele moderne, unele din ele prezentate în Capitolul 2, 
folosesc tehnici speculative. Principalul obiectiv al acestei teze îl reprezintă creşterea 
performanţelor unor microarhitecturi superscalare şi SMT (Simultaneous Multithreading) prin 
tehnici anticipatorii dinamice precum predicţia branch-urilor, predicţia valorilor şi reutilizarea 
instrucţiunilor. Această lucrare aduce contribuţii originale în identificarea branch-urilor dificile şi 
îmbunătăţirea predictibilităţii lor, în caracterizarea comportamentului acestora din punct de 
vedere al gradului de aleatorism, respectiv în dezvoltarea unor tehnici de reutilizare şi predicţie 
selective a valorilor instrucţiunilor în cadrul arhitecturilor superscalare şi al celor cu fire multiple 
de execuţie. 

Instrucţiunile de ramificaţie, generate de construcţii de limbaj de tipul if, switch, for, while 
etc., reprezintă un obstacol major în exploatarea paralelismului la nivelul instrucţiunilor (ILP). 
Rezultate statistice bazate pe simulări laborioase pe benchmark-uri reprezentative arată că o 
instrucţiune de ramificaţie apare la fiecare 5 – 8 instrucţiuni executate, ceea ce înseamnă că rata 
de aducere a instrucţiunilor este limitată la cel mult 8, aducerea simultană a mai multor 
instrucţiuni fiind inutilă. Pentru creşterea gradului de paralelism la nivelul instrucţiunilor 
procesoarele moderne folosesc predictoare markoviene, neuronale, bayesiene, bazate pe arbori 
de decizie sau pe algoritmi de tipul support vector machine etc., simplificate pentru a putea fi 
implementate în hardware. Prin predicţia dinamică a branch-urilor pot fi procesate mai multe 
basic block-uri în paralel. Pentru îmbunătăţirea performanţei instrucţiunile de ramificaţie trebuie 
identificate şi atât direcţia cât şi adresa de salt trebuie predicţionate corect. Factorul de 
superscalaritate al microprocesoarelor devine din ce în ce mai mare, permiţând rate de procesare 
mai agresive pentru îmbunătăţirea performanţelor. Procesoarele cu factor mare de 
superscalaritate pot fi afectate din punct de vedere al performanţelor în cazul predicţiilor greşite 
când contextul CPU trebuie refăcut şi instrucţiunile trebuie reexecutate pe căile corecte. De 
aceea, performanţa globală depinde foarte mult de acurateţea predictorului de salturi. Având în 
vedere faptul că numărul de instrucţiuni executate per ciclu creşte neliniar cu acurateţea 
predicţiei, este foarte importantă îmbunătăţirea acurateţii predictoarelor actuale. Calitatea unui 
model de predicţie este dependentă de calitatea informaţiei disponibile. Este foarte importantă 
alegerea caracteristicilor pe baza cărora se generează predicţia. Marea majoritate a predictoarelor 
de salturi se bazează pe mai multe informaţii de intrare (adresa instrucţiunii de salt, istoria locală, 
istoria globală, informaţii de cale etc.) fără să ţină cont de cauzele reale (ex. instrucţiuni de salt 
nepolarizate) care produc o acurateţe scăzută şi implicit performanţe mai slabe. 

În Capitolul 3 am demonstrat că o instrucţiune de ramificaţie într-un anumit context 
dinamic al informaţiei de predicţie este greu de prezis dacă este nepolarizată în acel context, 
oscilând între taken (saltul se face) respectiv not taken (saltul nu se face) într-un mod 
nedeterminist, entropic (comportament dezordonat). Cu alte cuvinte, o instrucţiune de ramificaţie 
dinamică este nepredictibilă cu o anumită informaţie de predicţie, dacă este nepolarizată în 
contextul dinamic considerat şi comportamentul în acel context nu poate fi modelat prin procese 
stohastice Markov. Am identificat aceste branch-uri dificile şi am încercat îmbunătăţirea 
predictibilităţii lor prin extinderea informaţiei de predicţie. Pe baza unor simulări laborioase am 
arătat că procentajul branch-urilor nepolarizate, pe istoria locală şi globală, este semnificativ: în 
medie între 6% şi 24% pe benchmark-urile SPEC 2000, în funcţie de contextul de predicţie 
folosit şi de lungimea acestuia (16-28 biţi). De asemenea, cercetările noastre au arătat că 
adăugarea informaţiei de cale (formată din PC-urile ultimelor k branch-uri) la cele clasice de 
istorie locală/globală determină o polarizare mai ridicată doar în cazul folosirii unor contexte de 
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istorie locală/globală scurte (sub 16 biţi). Istoriile locale şi globale suficient de lungi 
aproximează foarte bine informaţia de cale.  

În Capitolul 4 am arătat că pentru anumite instrucţiuni de ramificaţie, informaţiile de 
predicţie limitate (istorie locală, istorie globală şi calea spre branch-ul supus predicţiei) folosite 
de predictoarele actuale nu sunt întotdeauna suficient de relevante şi, din această cauză, ele nu 
pot fi predicţionate cu acurateţe. Acurateţea cea mai ridicată pe branch-urile nepolarizate, de 
doar 77,30%, am obţinut-o cu piecewise linear branch predictor [Jim05]. De aceea, este deosebit 
de importantă găsirea unor informaţii relevante care determină comportamentul instrucţiunilor de 
ramificaţie, pentru a fi utilizate de predictoare mai eficiente. Am dezvoltat diferite predictoare de 
valori Markoviene care folosesc istoria comprimată a precedentelor condiţii de salt, ale cărei 
elemente pot fi -1, 0 sau 1, în funcţie de semnul diferenţei dintre operanzi. Nici aceste 
predictoare puternice, capabile să exploateze corelaţia dintre comportamentul branch-ului şi 
istoria condiţiilor, n-au reuşit să îmbunătăţească predictibilitatea acestor branch-uri dificile. De 
asemenea, am îmbunătăţit predictoare convenţionale (GAg, PAg) şi neuronale, prin utilizarea 
condiţiei de salt precedente – Previous Branch Condition (PBC) – sub forma unei diferenţe pe 32 
de biţi dintre operanzi. Chiar şi predictorul piecewise linear branch predictor îmbunătăţit, cel 
mai performant pe branch-urile nepolarizate, obţine o acurateţe modestă de 78,3% pe branch-
urile nepolarizate, în timp ce acurateţea globală a predicţiei este de 95,45%. Aşadar, branch-urile 
nepolarizate sunt caracterizate de acurateţi de predicţie scăzute, indiferent de informaţia de 
predicţie folosită, reprezentând astfel o limitare fundamentală în domeniul predicţiei branch-
urilor. Astfel, creşterea acurateţii de predicţie a acestor instrucţiuni de ramificaţie nepolarizate 
constituie o problemă deschisă, deoarece fiecare procent de astfel de instrucţiuni reduce decisiv 
acurateţea predicţiei şi implicit performanţa de procesare. 

Pornind de la această provocare tehnică, în Capitolul 5 am realizat un studiu comparativ 
privind gradul de aleatorism al secvenţelor de simboluri (taken şi not taken) generate de branch-
uri polarizate respectiv nepolarizate. Pe baza cercetării bibliografice efectuate, am dezvoltat 
patru metrici pentru caracterizarea comportamentului unui branch din punct de vedere al 
gradului de aleatorism: complexitatea Kolmogorov a secvenţei de program care generează 
branch-ul, rata de compresie, entropia discretă respectiv acurateţea de predicţie cu HMM 
(Hidden Markov Models) a secvenţei generate de branch. Rezultatele simulărilor efectuate pe 
şase benchmark-uri de numere întregi din suita SPEC 2000 arată că toate cele patru metrici de 
caracterizare intrinsecă a unei secvenţe binare din punct de vedere al gradului de aleatorism 
asociat, converg în aceeaşi direcţie. Ele sunt foarte utile arhitectului de microprocesoare întrucât 
arată dacă un anumit branch dinamic este sau nu este „aleator” sau „nepredictibil”. În cazul în 
care metricile utilizate arată în mod clar că branch-ul nu este unul intrinsec aleator, arhitectul are 
şanse reale de îmbunătăţire a predictorului aferent. În cazul aleatorismului ridicat, răspunsul este 
unul pesimist întrucât secvenţa este una intrinsec, şi deci iremediabil, aleatoare. De precizat că 
aleatorismul comportării acestor branch-uri este o consecinţă a complexităţii uriaşe a 
programelor care le generează, după cum arătăm în lucrare. 

Instrucţiunile cu latenţă ridicată reprezintă o altă sursă de limitare a paralelismului la 
nivelul instrucţiunilor. În Capitolul 6 am arătat că 28,68% din instrucţiunile de ramificaţie 
(5,61% fiind chiar nepolarizate) sunt dependente de instrucţiuni cu latenţă ridicată (Load-uri 
critice, înmulţiri, împărţiri). Aceste dependenţe reprezintă o sursă importantă de penalităţi 
datorate predicţiilor greşite, afectând serios performanţa globală a procesorului. De aceea, 
impactul negativ al branch-urilor, în special al celor nepolarizate, asupra performanţei globale 
poate fi atenuat anticipând rezultatele instrucţiunilor cu latenţă ridicată. Am dezvoltat un 
mecanism de anticipare selectivă a valorilor instrucţiunilor cu latenţă de execuţie ridicată, care 
include o schemă de reutilizare pentru instrucţiunile Mul şi Div, respectiv un predictor de valori 
pentru instrucţiunile Load critice. Rezultatele simulărilor efectuate, au arătat creşteri de 
performanţă (IPC) de 3,5% pe benchmark-urile de numere întregi respectiv 23,6% pe cele 
flotante şi o scădere importantă a consumului relativ de energie (a EDP-ului) de 6,2% respectiv 
34,5%. 
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Tot în Capitolul 6 am arătat că există o corelaţie temporală între numele registrelor şi 
valorile memorate în acestea. De aceea am extins predicţia dinamică a valorilor prin introducerea 
conceptului de predicţie a valorilor centrată pe contextul CPU (registre) şi nu pe instrucţiuni. 
Practic se prezice valoarea registrului destinaţie curent bazat pe analiza valorilor anterioare ale 
acestuia. Localităţile valorilor obţinute pe anumite registre ale arhitecturii MIPS au fost 
remarcabile conducând la concluzia că predicţia valorilor poate fi aplicată cu succes cel puţin 
centrat pe aceste registre favorabile, prin ataşarea câte unui predictor la nivelul acestora. Astfel 
se reduce semnificativ numărul predictoarelor şi scade corespunzător complexitatea şi consumul 
de putere statică/dinamică. Rezultatele evaluărilor au arătat că predictorul hibrid cu prioritizare 
dinamică, format dintr-un predictor adaptiv pe două niveluri şi unul incremental, exploatează cel 
mai eficient această corelaţie, depăşind chiar şi hibridul mult mai complex format dintr-un 
predictor PPM (Prediction by Partial Matching) şi unul incremental. 

După ce am arătat utilitatea anticipării selective a instrucţiunilor cu latenţă ridicată într-o 
arhitectură superscalară, în Capitolul 7 am analizat eficienţa acestor metode şi într-o arhitectură 
SMT, focalizându-ne pe aceleaşi instrucţiuni: Mul şi Div respectiv Load-uri critice. Rezultatele 
au arătat îmbunătăţiri IPC pe toate configuraţiile SMT evaluate. Cu cât numărul de fire este mai 
mare, cu atât creşterea de performanţă devine însă tot mai puţin semnificativă, datorită 
exploatării tot mai eficiente a unităţilor de execuţie partajate de către procesorul SMT. Plastic 
spus, cu motorul SMT mergând în plin, sporul de performanţă aferent tehnicilor anticipative 
implementate adiţional devine mai mic. Cele mai bune performanţe medii, de 2,29 IPC pe 
benchmark-urile de numere întregi respectiv de 2,88 IPC pe cele flotante, s-au obţinut cu şase 
fire de execuţie. 

În Capitolul 8 sunt trecute succint în revistă contribuţiile ştiinţifice ale acestei lucrări şi 
sunt evidenţiate câteva dintre direcţiile viitoare de cercetare. 
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1. Introduction 

The number of instructions that can be processed simultaneously in multiple instruction issue 
(MII) microprocessors is limited by dependencies existing between instructions. To eliminate 
these dependencies modern architectures, some of them presented in Chapter 2 as prerequisites 
for this work, rely heavily on speculation. The main goal of this thesis is to increase instruction-
level parallelism (ILP) and therefore the overall performance of superscalar and multithreaded 
microarchitectures through advanced dynamic anticipatory techniques like branch prediction, 
value prediction and instruction reuse. This work brings original contributions in identifying 
difficult-to-predict branches and improving their predictability, in characterizing the randomness 
of their behavior, and in developing some selectively applied value prediction and instruction 
reuse methods. 

Branch instructions, appearing in high level program constructs like if, switch, for, while, 
etc., are a major bottleneck in the exploitation of ILP, since (in general-purpose code) 
conditional branches occur approximately every 5 – 8 instructions [Hen03]. Therefore, almost all 
present-day multiple instruction issue microprocessors are using advanced branch prediction 
techniques in order to increase ILP. Several prediction methods have been developed based on 
some well-known learning algorithms (Markovian, neural, Bayesian, decision trees, support 
vector machine, etc.) simplified for efficient hardware implementation. Through dynamic branch 
prediction microprocessors are speculatively processing multiple basic blocks in parallel and 
therefore their ability to increase ILP is stronger. In order to improve performance, branches 
must be detected within the dynamic instruction stream, and both the direction taken by each 
branch and the branch target address must be correctly predicted. Furthermore, predictions must 
be completed in time to fetch instructions from the branch target address without interrupting the 
flow of new instructions to the processor pipeline [Vin07]. In the case of misprediction, the CPU 
context must be recovered and the correct paths have to be reissued. As instruction issue width 
and the pipeline depth of MII processors are getting higher (allowing more aggressive clock rates 
in order to improve the overall performance), accurate dynamic branch prediction becomes more 
essential [Spr02]. Very high prediction accuracy is required because an increasing number of 
instructions are lost before a branch misprediction can be corrected. As an example, the 
performance of the Pentium 4 equivalent processor degrades by 0.45% per additional 
misprediction cycle, and therefore the overall performance is very sensitive to branch prediction. 
Taking into account that the average number of instructions executed per cycle (IPC) grows non-
linearly with the prediction accuracy [Yeh92], it is very important to further increase the 
accuracy achieved by present-day branch predictors. From a technological point of view, modern 
high-end processors use quite large tables for branch direction and target prediction [Sez02], and 
they are accessed every cycle resulting in significant energy consumption, sometimes more than 
10% of the total chip power [Cha03]. Therefore, power consumption is another important 
constraint of all present-day branch predictors. 

The quality of a prediction model is highly dependent on the quality of the available data. 
Especially the choice of the features to base the prediction on is important. The vast majority of 
branch prediction approaches rely on usage of a greater number of input features without taking 
into account the real causes (indirect jumps and calls and, especially, unbiased branches) that 
produce a lower accuracy and implicit lower performance. In Chapter 3 we identified difficult-
to-predict branches as being unbiased branches that have a “random” dynamic behavior, and 
tried to improve their predictability through context length extension. In Chapter 4 we showed 
that present-day branch predictors cannot accurately predict these branches due to their limited 
prediction information (branch address, local/global branch history, path). Therefore we 
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improved several state-of-the-art branch predictors with additional prediction information, 
namely the previous branch condition or even a compressed branch condition history, in order to 
improve their prediction accuracy. We also showed in Chapter 5 that sequences generated by 
unbiased branches are characterized by high random degrees.  

Long-latency instructions, especially critical Loads due to their memory wall problem (the 
increasing gap between processor and memory speeds), represent another source of ILP 
limitation. A solution to reduce the number of cache misses consists in prefetching speculatively 
data from memory to cache. Multithreading can also reduce the effects of the memory wall by 
hiding memory latency through issuing into the pipelines instructions from different idle threads. 
Value Prediction (VP) is another technique that increases performance by eliminating true data 
dependency constraints. VP architectures allow data dependent instructions to issue and execute 
speculatively using the predicted value. The speculative executions are validated when the 
correct values are known. If the value was correctly predicted the critical path is reduced, 
otherwise the instructions executed with wrong entries must be executed again. On the other 
hand, dynamic instruction reuse is a non-speculative microarchitectural technique that exploits 
the repetition of dynamic instructions with the same input values. The main benefit of reusing 
long-latency instructions consists in unlocking dependent instructions.  

In Chapter 6 we developed a superscalar architecture that selectively anticipates the values 
produced by long-latency instructions. We focused on Multiply, Division and Loads with miss in 
the L1 data cache. Thus, we implemented a Dynamic Instruction Reuse scheme for the Mul/Div 
instructions and a simple Last Value Predictor for the critical Load instructions. We also 
extended dynamic VP by introducing the concept of register-centric prediction instead of 
instruction-centric prediction. The register value prediction technique consists in predicting 
registers’ next values based on the previously seen values. It executes the subsequent data 
dependent instructions using the predicted values. In Chapter 7 we evaluated a simultaneous 
multithreaded architecture enhanced with selective instruction reuse and value prediction to 
anticipate the results of long-latency instructions.  

Finally, Chapter 8 concludes the thesis pointing out the original contributions and suggests 
some further work directions. 
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2. Speculative Computer Architectures 

All processors since about 1985 use pipelining in order to improve performance by overlapping 
the execution of instructions. A pipeline acts like an assembly line with instructions processed in 
phases. With simple pipelining, only one instruction at a time is introduced into the pipeline, but 
multiple instructions may be in different phases of execution concurrently. In the case of 
superscalar processors, more than one instruction at a time can be introduced into multiple 
pipelines to be executed simultaneously. This potential execution overlap among independent 
instructions is called instruction-level parallelism (ILP). There are some features of both 
programs and processors that limit the amount of parallelism such as structural hazards, data 
hazards and control stalls. In particular, to exploit instruction-level parallelism it must be 
determined which instructions can be executed in parallel. If two instructions are parallel and no 
structural hazards exist, they can be executed simultaneously in a pipeline without causing any 
stalls, assuming that the pipeline has sufficient resources. If two instructions are dependent they 
are not parallel and must be executed in order. There are three different types of dependences: 
data dependences, name dependences and control dependences.  

An instruction is data dependent if it uses the result produced by another instruction. Data 
dependences can be overcome through hardware techniques (dynamic instruction reuse, value 
prediction) and software techniques (by reorganizing the code). When two dependent 
instructions are close enough to change the order of access to the operand involved in the 
dependence, a data hazard occurs. Considering two successive instructions i and j, a RAW (read 
after write) data hazard occurs when instruction j tries to read a source before i writes it, so j 
incorrectly gets the old value. A WAW (write after write) data hazard occurs when instruction j 
tries to write an operand before it is written by i. A WAR (write after read) data hazard occurs 
when instruction j tries to write a destination before it is read by i. 

Name dependences occur when two instructions use the same register or memory location. 
Instructions involved in name dependence can be executed simultaneously or reordered if the 
register or memory location used by the instructions is changed so the instructions do not 
conflict. This renaming can be more easily done for register operands (register renaming), either 
statically by a compiler or dynamically by the hardware. 

Control dependences are generated by branch instructions. An instruction that is control 
dependent on a branch cannot be executed until the branch direction is known. Control stalls can 
be eliminated or reduced by a variety of hardware techniques (branch prediction) and software 
techniques (static scheduling). 

A major limitation of the simple pipelining techniques is that they all use in-order 
instruction issue and execution. Instructions are issued in program order and if an instruction is 
stalled in the pipeline, no later instructions can proceed. Out-of-order execution introduces the 
possibility of data hazards. Hennessy and Patterson in [Hen03] explore an important technique, 
called dynamic scheduling, in which the hardware rearranges the instruction execution in order 
to reduce the stalls. In a dynamically scheduled pipeline, all instructions are dispatched in order, 
however, they can be stalled or bypass each other in the issue stage and thus execute out of 
order. 

Branch prediction is a mechanism that reduces control stalls in order to improve 
performance in a multiple instruction issue processor. Control dependences are overcome by 
speculating on branch outcomes and executing dependent instructions as if the predictions were 
correct. Obviously it became necessary the integration of branch prediction into dynamically 
scheduled processors. Predicting the outcomes of conditional branches, more instructions can be 
fetched in parallel (a part of them are fetched speculatively from the predicted path), increasing 
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in this way the execution window [Smi95]. The fetched instructions are analyzed for true data 
dependences, issued to the functional units and executed out-of-order, in parallel, based on the 
availability of the operands. Value prediction is another technique that speculatively forwards 
predicted instruction results to the dependent instructions. With speculative execution, the 
architectural storage cannot be updated immediately when instructions complete execution. The 
results must be held in a temporary status until the architectural state can be updated in 
sequential program order. 

2.1. Speculative Dynamic Scheduling with Reorder Buffer 

The present-day out-of-order issue superscalar microprocessor model is implemented as a 
speculative microarchitecture that actually fetches, issues and executes instructions based on 
branch prediction using Tomasulo’s algorithm or closely related algorithms and a structure 
called Reorder Buffer (ROB). Figure 2.1 shows the hardware structure of the processor including 
the ROB. 
 

Instruction
queue

From instruction unit

Register
file

Reservation
stations

2
12

1

3

Adders Multipliers

Operation bus Operand
buses

Common data bus (CDB)

Address unit Address

Memory unit

Address

Reorder
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Load
buffers

Store
data

Load data

Data

Reg

Store
address

 
Figure 2.1. Tomasulo’s architecture extended to support speculation 

The hardware that implements Tomasulo’s algorithm [Tom67] can be extended to support 
speculation, only if the bypassing of results, which is needed to execute an instruction 
speculatively, is separated from the completion of an instruction (that consists in updating the 
memory or register file). Doing this separation, an instruction bypasses its results to other 
instructions, without performing any CPU updates that cannot be canceled. When the instruction 
is no longer speculative (after its writeback stage), it updates the register file or memory; this 
phase is called instruction commit. Separating the bypassing of results from instruction 
completion makes possible avoiding imprecise exceptions in out-of-order execution, preserving 
in this way exception behavior. An exception is imprecise if the processor state when the 
exception raised is not exactly as in the case of sequential execution. 

Adding this commit phase to the instruction execution sequence, an additional set of 
hardware buffers is required, which hold the results of instructions that have finished execution 
but have not yet committed. The reorder buffer provides the register renaming function and it is 
also used to pass the results of speculatively executed instructions. The reservation stations keep 
operations and operands only between the time they issue end the time they begin execution. 
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Each ROB entry contains four fields: Type, Dest, Value and the Ready field. The Type field 
indicates whether the instruction is a branch, a Store, or a register operation (ALU operation or 
Load). The Dest field supplies the register number for Loads and ALU operations or the memory 
address for Stores, where the instruction result must be written. The Value field is used to hold 
the value of the result until the instruction commits. The Ready field indicates if the instruction 
has completed execution and the value is ready. The ROB completely replaces the Store buffers. 
The ROB is usually implemented as a circular FIFO queue having associative search facilities. 

Each reservation station has the following eight fields:  
 
• Op – the operation performed on the source operands (opcode); 
• Qj, Qk – the ROB entries that will provide the source operands, a value of zero 

indicating that the source operand is already available in Vj, Vk, or that it is 
unnecessary; 

• Vj, Vk – the values of the source operands; for Loads and Stores the Vj field is used to 
hold the offset; 

• A – holds the memory address for Loads or Stores: initially holds the immediate field, 
after the address calculation holds the effective address; 

• Dest – supply the corresponding ROB entry number representing the destination for 
the result produced by the execution unit. 

• Busy – indicates if a reservation station is available or occupied. 
 

The register file has a field Qi indicating the number of the ROB entry that contains the 
operation whose result should be stored into the register. The six steps involved in instruction 
execution are the following [Hen03]: 
 
1. Fetch – fetches the next instruction into the instruction queue. 
2. Dispatch – gets the next instruction from the instruction queue. If all reservation stations are 

full or the ROB is full, then instruction dispatch is stalled until both structures have available 
entries. If there is an empty reservation station and the tail of the ROB is free, the instruction 
is sent to the reservation station. The Busy bit of the allocated reservation station is set and 
the Ready field of the ROB entry is reset. The source registers are searched associatively in 
the Dest field of the ROB, considering the last entry in the case of multiple hits, since the 
ROB entries are allocated in order. If an operand value is available in the ROB (Ready=1), it 
is written from the Value field into the reservation station field Vj / Vk. If the operand value is 
not available (Ready=0), the number of ROB entry that will provide the operand is written 
into the reservation station field Qj / Qk. In the case of miss in the ROB the operand value is 
written from the register set into the reservation station field Vj / Vk. The number of ROB 
entry allocated for the value of the result is sent into the Dest field of the reservation station. 
The destination register number is written into the Dest field of the ROB entry.  

3. Issue – if an operand is not yet available, the common data bus (CDB) is monitored until it is 
computed and when the operand is available on the CDB it is placed into the corresponding 
reservation stations. In order to avoid structural hazards, modern processors have multiple 
CDBs and a multiported ROB. When all the operands are available, the instruction is issued 
to the appropriate functional unit. By delaying instruction execution until the operands are 
available, RAW dependences are detected. 

4. Execute – the corresponding functional unit executes the operation. In the case of Loads and 
Stores the effective memory address is computed in this stage. In the case of a taken branch, 
usually is calculated the branch’s target address. 

5. Writeback – when the result is available, it is written to the CDB (together with the ROB 
entry number indicated by the Dest field of the reservation station) and from there into the 
Value field of the corresponding ROB entry, whose Ready field is set to 1. The Busy field of 
the corresponding reservation station is reset. The result is also written into field Vj / Vk of the 
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reservation stations that are waiting for it. In the case of a Store instruction if the value to be 
stored is available, it is written into the Value field of the ROB entry allocated for that Store. 
If the value to be stored is not available, the CDB is monitored, and when it is received, the 
Value field of the ROB entry is updated. 

6. Commit – the normal commit case occurs when an instruction reaches the head of ROB 
having its result available (Ready=1) and if no exception occurs. In this case, the result is 
written from the Val field of the ROB entry into the destination register or memory location 
indicated by the Dest field of the ROB entry and, after that, the instruction is squashed from 
the ROB. Thus, the in order commit is guaranteed by the in order dispatch, whereas the issue, 
execute and writeback stages can be processed out of order. When an incorrectly predicted 
branch reaches the head of the ROB, the ROB is flushed and the execution is restarted with 
the correct successor of the branch. 

 
As it can be observed, in the case of speculative architectures is very important when is 
performed the updating. Using the ROB, speculative executions are possible because the register 
file or memory is updated with the result of an instruction only when that instruction is no longer 
speculative. 

2.2. The Architecture of Sim-Outorder 

In this work we relied on some commonly used simulators like Simplesim [Bur97] and the M-
SIM [Sha05] which extends the Simplesim toolset with support for concurrent execution of 
multiple threads and power consumption evaluation. The sim-outorder simulator (see Figure 2.2) 
from the Simplesim-3.0 toolset [Bur97] simulates a superscalar architecture that uses a register 
update unit (RUU) in order to support out-of-order and speculative execution. The RUU is a 
combination of reservation stations and ROB, and is organized as a circular queue. Each RUU 
entry contains the following fields: 
 

• IR – stores the instruction bits. 
• op – holds the opcode after the instruction is decoded in the dispatch stage. 
• PC – the instruction address. 
• next_PC – the next instruction address. 
• pred_PC – the next predicted instruction address. 
• ea_comp – non-zero if the operation is an address computation (the first operation in 

the case of Load and Store instruction preceding the memory access). 
• in_LSQ – non-zero if the Load/Store operation is in the LSQ. 
• recover_inst – indicates when an instruction is the start of misspeculation. 
• dir_update – pointer to the branch predictor state entry. 
• spec_mode – indicates if the instruction was fetched speculatively. 
• addr – holds the effective address for Load/Store instructions. 
• tag – RUU slot tag, used to identify an operation in the RUU. 
• queued – indicates that the operands are ready and the operation was queued to the 

ready_queue. 
• issued – indicates that the operation was issued for execution. 
• completed – indicates that the operation has completed the execution. 
• onames – output logical register names. 
• odep_list – dependency list containing a pointer to all dependent RUU entries. These 

lists are used to limit the number of associative searches in the RUU when operations 
complete the execution and need to wake up dependent operations. 

• idep_ready – indicates if the input operands are ready. 
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Figure 2.2. The architecture of Sim-Outorder 
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For Loads and Stores a Load/Store Queue (LSQ) is also used. The LSQ has the same 
structure as the RUU. Load and Store instructions are split in two operations: the effective 
address computation that is inserted into the RUU and the Load/Store operation that is inserted 
into the LSQ and is activated by the RUU when the address computation is finished. A rename-
table structure called Create Vector (CV) holds for each register the last mapped RUU or LSQ 
entry that will write the result into that register. The CV is divided into a speculative table 
(maintains the last speculative state of the register file) and a non-speculative table (maintains 
the last non-speculative state of the register file). The CV is used to handle instruction 
dependencies: to construct the dependency lists (odep_list) and to squash efficiently the RUU 
and LSQ structures if an exception occurs. An instruction fetch queue (IFQ) is used to hold the 
instructions fetched from memory. Each IFQ entry has the following fields: IR (holds instruction 
bits), regs_PC (instruction address), pred_PC (next predicted instruction address) and 
dir_update (pointer to the branch predictor state entry). A ready queue (RQ) is used to hold 
operations whose operands are ready and an event queue (EQ) holds operations during their 
execution. Each RQ and EQ location contains only a pointer to the RUU or LSQ entry associated 
to the operation. 

The sim-outorder simulator uses a pipeline with five important stages implemented in 
software: fetch, dispatch, issue, write back and commit. The classical execution stage is 
distributed into the dispatch and issue stages as we will detail further. In the software 
implementation of this superscalar architecture the pipeline stages are executed sequentially and 
are not overlapped leading in this way to synchronization problems. More exactly, because one 
cycle of execution in the simulator corresponds to the sequential iteration of all pipeline stages 
once, the effects of a certain stage are “instantaneously” seen by the next pipeline stages too 
early, in the current cycle, while they must be seen only in the next cycle. Therefore, in order to 
eliminate these synchronization problems, the pipeline stages are traversed in reverse order, and 
thus, the effects of a certain one-cycle operation are visible correctly only in the next cycle 
(iteration). The seven execution steps of sim-outorder are the following: 
 
1. Fetch (ruu_fetch) – as many instructions are fetched up (MD_FETCH_INST) as one branch 

prediction and one instruction-cache line support, without overflowing the instruction fetch 
queue (IFQ). The instructions are inserted into the tail of the IFQ (fetch_data). If the 
simulator is started with a branch predictor, the instructions are pre-decoded in order to 
identify branches (MD_SET_OPCODE). When a branch instruction occurs the next 
instruction is fetched from the address pred_PC predicted using a certain pred branch 
predictor (bpred_lookup). 

2. Dispatch (ruu_dispatch) – gets the next instruction from the head of the IFQ, decodes the 
instruction (MD_SET_OPCODE), and inserts it into the tail of the RUU if it is free. For 
Loads and Stores the effective address computation is inserted into the tail of the RUU, and 
the Load/Store operation is inserted into the tail of the LSQ. If the RUU/LSQ is full, then 
instruction dispatch is stalled until the structure has available entries. The dispatched 
instructions are removed from the IFQ. A pointer to the allocated RUU/LSQ entry (rs) is 
introduced into the dependency list (odep_list) corresponding to the RUU/LSQ entries – 
identified based on the CV – that will produce the input operands (ruu_link_idep). The 
output register numbers are written into the onames field and a pointer to the allocated 
RUU/LSQ entry (rs) is set to all the output registers in the CV structure (ruu_install_odep). 
If all the input operands are available, a pointer to the allocated RUU/LSQ entry (rs) is 
inserted into the tail of the RQ (readyq_enqueue). Actually the simulator “instantaneously” 
executes the operation in this stage, but correctly simulates its latency through the write-back 
event in the next stages. In the case of a Store instruction a pointer to the allocated LSQ entry 
is also inserted into the tail of the RQ (Load operations are queued into the RQ only in the 
LSQ-refresh stage). 
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3. Issue (ruu_issue) – tries to issue all instructions from the RQ (ready_queue) to free 
functional units (FU) whose busy count is set to the latency value corresponding to the issued 
operation. A writeback-event is scheduled for each issued operation to the cycle obtained 
adding its execution latency to the current cycle: a pointer to the corresponding RUU/LSQ 
entry (rs) is inserted together with the scheduled writeback-cycle (wb_cycle) into the EQ 
(eventq_queue_event). The EQ (event_queue) is sorted from earliest to latest event. The 
issued operations are evacuated from the RQ. The issue stage ends with the execution of the 
operations at the functional units (the previously presented Tomasulo’s architecture has an 
additional execute stage for this operation). Thus, the execution is simulated by scheduling 
the writeback-event to the cycle obtained by adding the corresponding execution latency to 
the current cycle. Store operations are executed only in the commit stage. 

4. LSQ-refresh (lsq_refresh) – a pointer to each Load operation (rs) from the LSQ whose 
operands are ready is inserted into the RQ (readyq_enqueue). Store operations are inserted 
during the dispatch stage. 

5. Writeback (ruu_writeback) – in the case of a misprediction the RUU/LSQ entries 
corresponding to speculatively fetched instructions are squashed and the CV is reverted to 
the last non-speculative state. In the normal writeback case, for each event from the EQ 
whose scheduled writeback-cycle is less than or equal to the current execution cycle (the 
event has already occurred), the result is written from the functional unit (FU) to the 
RUU/LSQ, and the event is removed from the EQ. If the RUU/LSQ entry afferent to the 
completed operation is still mapped in the CV to the output registers, the corresponding CV 
entries are invalidated (assigning NULL), because the construction of the operation’s 
dependency list (odep_list) finished. Dependent operations that occur in the future will get 
the result from the RUU/LSQ or from the register file. Each RUU/LSQ entry that has a 
pointer in the dependency list (odep_list) of the completed operation is updated with the 
result, and if all its operands are ready, it is queued into the RQ – its pointer (rs) is inserted 
into the tail of the RQ (readyq_enqueue). 

6. FU-release (ruu_release_fu) – the busy count of each FU is decremented by 1. An FU is free 
for another operation when its busy count is 0. 

7. Commit (ruu_commit) – the normal commit case occurs when an instruction reaches the head 
of the RUU/LSQ and its result is available (completed=TRUE). The results are written from 
the head of the RUU/LSQ into the register file. If a Store instruction occurs in the head of the 
LSQ, the Store data is written to the data cache. At the end of the commit stage the head of 
the RUU/LSQ is freed and, in the case of branch instructions, the used branch predictor pred 
is updated (bpred_update). 

 
The fetch, dispatch and commit stages are effectuated in program order avoiding thus imprecise 
exceptions, while the other stages might be executed out of order. In fact, instruction execution is 
done “instantaneously” in ruu_dispatch. Thus, instructions flow down the pipeline only for 
timing evaluations. Therefore, there is no need to actually store the result value into the 
RUU/LSQ structure at the end of the writeback stage and there is no need to update the register 
file in the commit stage because that’s already been done in the dispatch stage. 
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3. Finding Difficult-to-Predict Branches 

Since the performances of modern speculative architectures highly depend on branch prediction 
accuracy, we will further focalize on some branch prediction limitations, namely, on hard-to-
predict branches. Our first goal is to identify difficult branches in the SPEC 2000 benchmarks 
[SPEC]. We consider that a branch in a certain context is difficult-to-predict if it is unbiased (the 
branch behavior is not sufficiently polarized for that certain context) and the taken and not taken 
outcomes are non-deterministically shuffled. The second goal is to improve prediction accuracy 
for branches with low polarization rate, introducing new feature sets that will increase their 
polarization rate and, therefore, their predictability. 

3.1. Methodology of Identifying Unbiased Branches 

Based on our previous work already published in [Gel06a, Vin06, Oan06, Gel07c] we are 
presenting in this paragraph the methodology of finding difficult-to-predict branches, as they are 
defined in our approach. For each processed dynamic branch, the prediction is achieved based on 
some binary context information (local or global branch history, the path leading up to the 
branch, etc.). We have statistically observed that some dynamic branches occurring in certain 
contexts have a highly unbiased behavior. We consider that a branch in a context is difficult-to-
predict if it is unbiased and the taken and not taken outcomes are shuffled. Therefore, we 
evaluate the impact of unbiased branches on different commonly used features. 

We called feature the binary context on p bits of prediction information such as local 
history, global history or path. Each static branch finally has associated k dynamic contexts in 
which it can appear ( pk 2≤ ). A context instance is a dynamic branch executed in the respective 
context. We introduce the polarization index (P) of a certain branch context as follows: 


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<
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5.0,

),max()(
01

00
10 ff

ff
ffSP i      (3.1) 

where: 

• { }kSSSS ...,,, 21=  = set of distinct contexts that appear during all branch instances; 
• k = number of distinct contexts, pk 2≤ , where p is the length of the binary context; 

• 
NTT

NTf
NTT

Tf
+

=
+

= 10 , ,  NT = number of not taken branch instances corresponding 

to context Si, T = number of taken branch instances corresponding to context Si, 
ki ...,,2,1)( =∀ , and obviously 110 =+ ff ; 

• if kiSP i ...,,2,1)(,1)( =∀= , then the context iS  is completely biased (100%), and thus, 
the afferent branch is highly predictable; 

• if kiSP i ...,,2,1)(,5.0)( =∀= , then the context iS  is totally unbiased, and thus, the 
afferent branch might be not predictable if the taken and not taken outcomes are shuffled.  

If the taken and not taken outcomes are grouped separately, even in the case of a low 
polarization index, the branch is predictable. The unbiased branches are not predictable only if 
the taken and not taken outcomes are chaotically shuffled, because in this case, the predictors 
cannot learn their behavior. We introduce the distribution index (shuffle degree) for a certain 
branch context, defined as follows: 
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where: 

• nt = the number of branch outcome transitions ( 10 →  or 01→ ) in a certain context Si; 
• ),min(2 TNT⋅  = maximum number of possible transitions; 
• k = number of distinct contexts, pk 2≤ , where p is the length of the binary context; 
• if kiSD i ...,,2,1)(,1)( =∀→ , then the behavior of the branch in context Si is 

“contradictory”; 
• if kiSD i ...,,2,1)(,0)( =∀→ , then the behavior of the branch in context Si is constant. 

As it can be observed in Figure 3.1, we want to systematically analyze different feature 
sets used by different present-day branch predictors in order to find and, hopefully, to reduce the 
list of unbiased branch contexts (contexts with low polarization P).  
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Figure 3.1. Reducing the number of unbiased branches through feature set extension 

We approached an iterative methodology: we evaluate and reduce the number of unbiased 
branches by passing them through successive cascades of different prediction contexts (feature 
sets). Gradually this list is shortened by increasing the lengths of feature sets (from 16 to 28 bits) 
and reapplying the algorithm. Thus, the final list of unbiased branches contains only the branches 
that were unbiased throughout all their contexts, being therefore identified as difficult-to predict. 
For the final list of unbiased branches we will try to find new relevant feature sets in order to 
further improve their polarization index and, therefore, the prediction accuracy. 

In our experiments we concentrated only on benchmarks with a percentage of unbiased 
branch context instances (obtained with relation (3.3)), greater than a certain threshold (T=1%) 
considering that the potential prediction accuracy improvement is not significant in the case of 
benchmarks with percentage of unbiased context instances less than 1%. If the percentage of 
unbiased branch contexts is 1%, even if they would be solved, the prediction accuracy would 
increase with maximum 1%. This maximum can be reached when the predictor solves all 
discovered difficult-to-predict branches. 

01.0==
i

i

NB
NUB

T         (3.3) 

where NUBi is the total number of unbiased branch context instances on benchmark i, and NBi is 
the number of dynamic branches on benchmark i (the total number of branch context instances). 
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3.2. Experimental Results 

3.2.1. Pattern-Based Correlation 

In order to reduce the number of unbiased branches, we first increased the lengths of the branch 
contexts (local/global histories, etc.). We identified and decreased the number of unbiased 
branches in the SPEC 2000 benchmark suite [SPEC] by passing unbiased branches through 
successive cascades of different prediction contexts – local history (LH) and global history (GH) 
– by increasing history information (from 16 to 28 bits).  
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Figure 3.2. Reduction of average percentages of unbiased context instances (P<0.95) in the SPEC 2000 

benchmarks by extending the lengths of feature sets 

Using a global history context of 16 bits, about 17% of branches are unbiased and unpredictable. 
This number decreases to about 6% if the context has 28 bits. We consider that this value of 6% 
is still too high and further investigations are required. The evaluation results also show that the 
“ultimate predictability limit” of history context-based prediction is about 94%, considering 
unbiased branches as completely unpredictable. A conclusion based on our simulation results is 
that about 94% of dynamic branches can be solved with prediction information of up to 28 bits.  

For the determined unbiased branch contexts we are analyzing now if the taken and not 
taken outcomes are grouped separately. This is necessary, because if the branch outcomes are not 
shuffled they are predictable using corresponding two-level adaptive predictors, but if these 
outputs are shuffled the branches are not predictable. We used relation (3.2) in order to 
determine the distribution indexes for each unpredictable branch context per benchmark. We 
evaluated only the unbiased dynamic branches obtained using all their contexts of 16 bits. As our 
evaluations show, in the case of unbiased branch contexts, the taken and not taken outcomes are 
not grouped separately, more, they are highly shuffled.  

The percentage of unbiased branch contexts having highly shuffled outcomes (with 
distribution index greater than 0.4) is 76.3% in the case of local history of 16 bits and 89.37% in 
the case of global history of 16 bits. A distribution index of 1.0 means the highest possible 
alternation frequency (with taken or not taken periods of 1). A distribution index of 0.5 means 
again a high alternation, since, supposing a constant frequency, the taken or not taken periods are 
only 2, lower than the predictors’ learning times. In the same manner, periods of 3 introduce a 
distribution of about 0.25, and periods of 5 generate a distribution index of 0.15, therefore we 
considered that if the distribution index is lower than 0.2 the taken and not taken outcomes are 
not highly shuffled, and the branch’s behavior could be learned.  

Taking into account that increasing the prediction accuracy with 1%, the IPC (instructions-
per-cycle) is improved with more than 1% (it grows non-linearly) [Yeh92], there are great 
chances to obtain considerably better overall performances even if not all of the 6.19% difficult 
predictable branches, from the SPEC 2000 benchmarks, will be solved. Therefore, we consider 



Finding Difficult-to-Predict Branches 

16 

that this 6.19% represents a significant percentage of unbiased branch context instances, and in 
the same time a good improvement potential in terms of prediction accuracy and IPC. Focalising 
on these unbiased branches – in order to design some efficient path-based predictors for them 
[Nair95, Vin99b] – the overall prediction accuracy should increase with some percents, that 
would be quite remarkable. The simulation results also lead to the conclusion that as higher is the 
feature set length used in the prediction process, as higher is the branch polarization index and 
hopefully the prediction accuracy (Figure 3.2). A certain large context (e.g. 100 bits) – due to its 
better precision – has lower occurrence probability than a smaller one, and higher dispersion 
capabilities (the dispersion grows exponentially). Thus, very large contexts can significantly 
improve the branch polarization and the prediction accuracy, too. However, they are not always 
feasable for hardware implementation. The question is: what feature set length is really feasable 
for hardware implementation, and more important, in this case, which is the solution regarding 
the unbiased branches? In our opinion, as we’ll further show, a feasable solution in this case 
could be given by path-based predictors. 

3.2.2. Path-Based Correlation 

The path information could be a solution for relatively short history contexts (low correlations). 
Our hypothesis is that short contexts used together with path information should replace 
significantly longer contexts, providing the same prediction accuracy. A common criticism for 
most of the present two-level adaptive branch prediction schemes consists in the fact that they 
used insufficient global correlation information [Vin99b]. There are situations when a certain 
static branch, in the same global history context pattern, has different behaviors (taken / not 
taken), and therefore the branch in that context is unbiased. If each bit belonging to the global 
history will be associated during the prediction process with its corresponding PC, the context of 
the current branch becomes more precise, and therefore its prediction accuracy could be better. 
Our next goal is to extend the correlation information with the path, according to the above idea 
[Vin99b]. Extending the correlation information in this way, suggests that at different 
occurrences of a certain static branch with the same global history context, the path contexts can 
be different. 

We evaluated – on all branches (non-iterative simulation) – the number of unbiased 
context instances (P<0.95) using as prediction information paths of different lengths (p PCs) 
together with global histories of the same lengths (p bits). The results are presented in Figure 3.3 
where they are compared with the results obtained using only global history.  
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Figure 3.3. The gain introduced by the path for different context lengths – SPEC 2000 benchmarks 

Figure 3.3 shows that the path is relevant for better polarization rate and prediction accuracy 
only in the case of short contexts and there is only marginal gain with longer history lengths (p 
bits), meaning that a global branch history of more than 12 bits approximates very well the 
longer path information (p PCs). 
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4. Predicting Unbiased Branches 

In Chapter 3 we showed that the percentages of difficult branches are quite significant (at 
average between 6% and 24%, depending on the different used prediction contexts and their 
lengths). This chapter presents some important present-day branch predictors and some 
condition-history-based branch predictors proposed by us in [Gel07a, Gel07b, Gel07c], all of 
them being used to evaluate, in terms of prediction accuracy, the unbiased branches identified in 
Chapter 3. 

4.1. Value-History-Based Branch Prediction with Markov Models 

Value predictors that implement the “Prediction by Partial Matching” algorithm (PPM) [Saz97, 
Jos97] represent an important class of context-based predictors. Mudge et al. [Mud96] 
demonstrates that all two-level adaptive predictors implement special cases of the PPM 
algorithm that is widely used in data compression. It seems that PPM provides the ultimate 
predictability limit of two-level predictors. The PPM-based predictor contains a set of simple 
Markov predictors, each one predicting the value that followed the corresponding context with 
the highest frequency. In a complete-PPM predictor, if a prediction cannot be furnished by the 
Markov predictor of order k, then the pattern length is shortened and the Markov predictor of 
order 1−k  is used to furnish the prediction and so on until either a prediction is furnished or the 
Markov predictor is of the order 0. 

Our second idea in order to reduce the number of unbiased branches, after the feature set 
length extension (presented in Chapter 3), was to find new relevant information that could reduce 
their entropy making them more predictable. Representing the problem in a superior feature 
space dimension is a general well-known method in solving many Computer Science 
classification/prediction problems. Therefore, we predict the condition of the current branch (B0) 
based on the conditions of the previous branches (B1, B2, ..., Bh), with different PPM predictors. 
We use each branch condition as the value or the sign of the difference between the operand 
values (two approaches). Regarding the approach that uses only the signs of the input 
differences, a value of 1 indicates that the corresponding branch difference is positive, a -1 
indicates a negative difference, while a 0 indicates equality between the branch inputs. The 
outcome of the current branch B0 is determined speculatively based on its predicted condition 
(difference). 

But is it better to use only the signs of differences as history information instead of the 
values of differences? Is this compressed branch condition history more efficient than the most 
complete value history? The number of distinct symbols that can occur in a value history is huge 
reported to only three symbols that can appear in a sign history. Thus, the frequency of symbols 
in a value history is very low. In the following example only a Markov predictor of order 1 can 
be used for the value history, and it generates a misprediction, while in the case of the sign 
history, even a Markov predictor of order 5 can be used, which achieves the correct prediction: 

Value history: -126, -34,  7, -42, -28, 75, -829, -7982, 102, -542, -42, ? 
Sign history: -1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, ? 

Obviously, through a sign history much deeper correlations can be exploited than with a value 
history. A natural question is: are the sign histories better than the simplest branch outcome 
histories (taken / not taken)? The difference-sign history can be more efficient because, due to its 
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additional information, it can efficiently exploit shorter contexts, too. The following example 
presents the situation for bgez: 

Difference history: 138, 52, 47, 0, -591, 5783, 4, 702, 0, -35, 721, 5, 14, 0, ? 
Sign history:  +, +, +, 0, -, +, +, +, 0, -, +, +, +, 0, ? 
Output history: T, T, T, T, NT, T, T, T, T, NT, T, T, T, T, ? 

If after “0” statistically follows “-“ (and, in the case of bgez, “0” is associated together with “+” 
to taken) a first order Markov can correctly predict in the case of sign history, while, in the case 
of outcome history, the Markov predictor must be of order 4 or higher for correct prediction. 
Anyway, the simulation results will decide which type of branch condition history is the most 
efficient. 

4.1.1. Local Branch Difference Predictor 

Figure 4.1 presents the speculative branch execution mechanism of our local PPM branch-
difference predictor. The Branch Difference History Table (BDHT) maintains for each static 
branch the differences corresponding to the branch’s last h dynamic instances (B1, B2, ..., Bh). 
The BDHT entry is selected by the branch address (PC of B0). The branch differences from the 
selected BDHT entry are then used as inputs into the complete-PPM predictor. The PPM 
predictor of order k (where k<h) furnishes the predicted difference of the branch undergoing 
execution (B0). Speculative execution of the branch B0 based on its predicted difference only 
occures in the case that the considered pattern of length k is repeated in the string of last h 
differences with a frequency greater than or equal to a certain threshold value. 
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Figure 4.1. A local PPM-based branch-difference predictor 

4.1.2. Combined Global-Local Branch Difference Predictor 

Figure 4.2 presents the speculative branch execution mechanism using a combined global and 
local PPM-based branch-difference predictor. The Global History Register (GHR) contains the 
global history: the global branch difference history or the global branch outcome history (two 
different approaches). For each global history pattern, a distinct BDHT is maintained. Thus, the 
BDHT is selected by the GHR. Each BDHT is configured as a local BDHT and is accessed as 
described in section 4.1.1.  
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Figure 4.2. A global-local PPM-based branch-difference predictor 

4.1.3. Branch Difference Prediction by Combining Multiple Partial Matches 

Figure 4.3 presents the speculative branch execution mechanism using the Branch-Difference 
Predicion by Combining Multiple Partial Matches (BPCMP). An entry in the BDHT is accessed 
as described in section 4.1.1, but now the h branch differences are used as inputs into multiple 
Markov predictors of different orders. Thus, the sign of the input difference (-1, 1, or 0) 
corresponding to the current branch (B0) is predicted using multiple Markov predictors of orders 
ranging between [1, n], n<h (see Figure 4.3). The final branch difference prediction is then 
furnished through majority vote. 
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Figure 4.3. Branch-difference prediction by combining multiple Markov predictors 
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We have also investigated a confidence-based voting mechanism. In this case, each BDHT 
entry holds n saturated confidence counters, in the range [-4, 4], which are associated with the n 
Markov predictors. A certain Markov predictor of order k (1≤ k≤n) will furnish a value 
prediction if the corresponding pattern occures at least once in the history of h values. In the case 
of a correctly predicted branch, its confidence saturating counter is incremented and decremented 
in the case of a misprediction. Each Markov prediction is replicated as many times as the 
corresponding counter’s value shows (only if this value is greater than zero). These multiple 
predictions are then passed to the voter, which furnishes the most frequent value.  

4.2. Using Previous Branch Condition as Prediction Information 

In this section we tried to use the value of previous branch condition (PBC) as prediction 
information, taking into account that it determines branch’s behavior. A PBC value consists in 
the difference of the operand values involved in the previous branch condition. Using only one 
branch condition is in concordance with Heil’s observation in [Hei99b] that majority of 
prediction accuracy improvement is gained by using a single branch difference. First we 
evaluated the percentage of unbiased context instances (having polarization P less than 0.95) 
using the PBC value together with the global histories of p bits (1≤p≤24). Figure 4.4 compares 
the percentages of unbiased branches using the global history (GH), the global history 
concatenated with the path (GH + PATH), and the global history concatenated with the value of 
the previous branch condition (GH + PBC). 
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Figure 4.4. The gain introduced by the previous branch condition (PBC) vs. the path for different context 

lengths – SPEC 2000 benchmarks 

The experimental results, presented in Figure 4.4, show that the PBC value is more 
efficient than the path information: it decreased the percentage of unbiased branches for all 
evaluated context lengths (1≤p≤24). Therefore we could use this new prediction information in 
some state-of-the-art branch predictors in order to increase prediction accuracy [Gel07a, Gel07b, 
Gel07c]. 

4.2.1. The GAg Predictor Using Global PBC Value 

We first analyzed a GAg  scheme that uses the previous branch condition (PBC) by XORing it 
with the GHR (as the Gshare XORed the PC with the GHR). The predictor’s scheme is presented 
in Figure 4.5.  
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Figure 4.5. The GAg predictor using the previous branch condition (PBC) 

4.2.2. The PAg Predictor Using Local PBC Value 

We have also analyzed a PAg  scheme that uses the local (per-address) PBC value (previous 
branch condition) by XORing it with the LHR (local history register). The Per-address Branch 
History Table (PBHT) maintains for each branch its own Local History (LH) and its Previous 
Branch Condition (PBC) value. The predictor is presented in Figure 4.6.  
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Figure 4.6. The PAg predictor using the local PBC value 

4.2.3. The Piecewise Linear Branch Predictor Using PBC Value 

Further, we propose some improved idealized piecewise linear branch predictors (see Figures 
4.7 and 4.8) that use the previous global or local branch condition (PBC) as additional prediction 
information. The global history length is dynamically adjusted between 18 and 48 bits and the 
local history length between 1 and 16 bits, as in [Jim05, Gel07a, Gel07b]. In both schemes local 
and global branch histories together with the PBC value are used as inputs for the selected 
perceptron in order to generate a prediction. The three indexes used within the weight selection 
mechanism are obtained through a hash function that uses three prime numbers, as follows 
[Jim04]: 
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 ( ) ( ) ( )[ ] NWiPCPCindex i
i
GH mod1289381660509511387 1 ⋅⊕⋅⊕⋅= −  (4.1) 

 ( ) ( )[ ] NWjPCindex j
LH mod1289381511387 ⋅⊕⋅=    (4.2) 

 ( ) ( )[ ] NWkPCindexk
PBC mod1289381511387 ⋅⊕⋅=    (4.3) 

where GHlengthi ,1= , LHlengthj ,1= , PBClengthLHlengthLHlengthk ++= ,1  (PBClength is 
32 in our case), and NW is the total number of weights (parameter varied in our simulations 
between 8590 and 30713). PCi-1 represents the previous (i-1)th branch’s PC, belonging to the path 
of the current branch. Consequently, a certain prediction is generated using 
( PBClengthLHlengthGHlength ++ ) number of selected weights. These weights were selected 
from a table containing NW weights. The first two relations were used according to Jimenez’s 
simulator proposals [Jim04] while the third one was introduced by us, according to the new 
introduced PBC information. 

4.2.3.1 The Piecewise Linear Branch Predictor Using Global PBC Value 

Figure 4.7 presents the scheme of the perceptron-based branch predictor that is using as 
additional prediction information the global previous branch condition (PBC). The lower part of 
the branch address (PC) selects a perceptron in the table of perceptrons and a local history 
register in the local branch history table.  
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Figure 4.7. Perceptron-based branch predictor using the global PBC value 

4.2.3.2 The Piecewise Linear Branch Predictor Using Local PBC Value 

Figure 4.8 presents a possible scheme of the perceptron-based branch predictor that is using as 
prediction information local (per-address) previous branch condition (PBC). The Local Branch 
History Table maintains for each branch its Local History (LH) and its the Previous Branch 
Condition (PBC) value. 
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Figure 4.8. Perceptron-based branch predictor using the local PBC value 

4.3. Experimental Results 

The perceptron and our branch difference predictors were implemented by extending the sim-
bpred simulator provided in SimpleSim-3.0 [Sim]. We also include the implementation of the 
unbiased branch selection mechanism and, thus, the predictors can be evaluated on unbiased 
branches, too. We have evaluated our predictors on SPEC 2000 benchmarks, especially those 
that indicated a high percentage of unbiased branches [Gel06a, Vin06]. 

4.3.1. Evaluating State-of-the-Art Branch Predictors 

We showed that the best state of the art branch predictors [CBP04, CBP06] are obtaining very 
low prediction accuracies on unbiased branches, at average about 70% [Gel07b, Gel07c]. The 
same predictors are predicting a “normal” branch with accuracies ranging between 95% and 
99%. These predictors are usually hybrid: Markovian, PPM-based, and neural. The unbiased 
branches cannot be accurately predicted even with the actual most powerful branch predictors. 
This fact is perfectly normal taking into account that the problem consists in better representing 
the unbiased branches in a new efficient feature space rather in finding better prediction 
structures.  
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Figure 4.9. Branch prediction accuracies obtained using the perceptron-based predictors, the O-GEHL 

predictor and the PPM-based predictors, only on unbiased branches 
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As Figure 4.9 shows, the highest average prediction accuracy on the unbiased branches, of 
77.30%, was provided by the idealized piecewise linear branch predictor [Jim05]. This low 
prediction rate is understandable taking into account that even a neural predictor cannot 
effectively learn unbiased branches. As a comparison, the same predictor obtained far better 
average prediction accuracy, of 94.92%, on all branches. 

4.3.2. Evaluating PBC-Based Branch Predictors 

We evaluated our modified GAg, PAg and piecewise linear branch predictor on unbiased 
branches, using the global PBC value as additional prediction information. For the piecewise 
linear branch predictor we increased the number of weights from 8590 upto 30713, the higher 
weights number being justified by the long additional information. 

With the modified piecewise linear branch predictor we obtained a prediction accuracy of 
78.30% opposite to those obtained with the modified GAg, 69.87% and the modified PAg, 
73.75%. This gain was probably obtained because both the modified GAg and PAg predictors 
use a hashing between PBC value and global/local branch history, while the modified piecewise 
linear branch predictor uses the branch history and PBC value without hashing (by 
concatenating them). 

Figure 4.10 presents the prediction accuracies obtained on all branches and on the unbiased 
branches with our best proposed and implemented predictor: the idealized piecewise linear 
branch predictor using the global PBC value as additional prediction information. The first two 
bars represent the prediction accuracies on all branches and on unbiased branches, obtained with 
the idealized piecewise linear branch predictor (PW). The rest of the bars were obtained using 
the PBC value (32 bits) as additional prediction information, varying the number of weights 
(from 8590 up to 30713). 
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Figure 4.10. Average prediction accuracies obtained with piecewise linear branch predictor on unbiased 
branches versus all branches, using the global PBC value as additional prediction information 

Analyzing comparatively the results presented in Figures 4.9 and 4.10 it can be observed how the 
PBC value determines the improvement of unbiased branch prediction accuracy, overcoming 
with at least 1% the best state of the art predictor’s performance. Even if the improvement seems 
less significant, it is very clear how this small percentage contributes to the global prediction 
accuracy (value that overcomes with more than 0.53% the best state of the art predictor’s 
performance). 
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5. Better Understanding Unbiased Branches Using 
Random Degrees 

As we stated out in the previous chapter, the unbiased branches behavior is practically 
unpredictable. Why this? Are these special branches unpredictable due to some relevant 
information misses or are they “random”? However, they were obtained by compiling some 
deterministic programs; therefore they were not randomly generated. But... what is random? 
During this chapter we try to understand random strings of symbols from a mathematical point of 
view in order to practically propose some concrete metrics characterizing them. These metrics 
could help us to better understand and analyze the unbiased branches behavior and their potential 
predictability. 

A pragmatic aim consists in finding some deterministic hidden information that could 
reduce the unbiased branches’ entropy. This is extremely difficult at least from two reasons: first, 
due to the enormous complexity of the benchmarks’ dynamic behavior and, second, due to the 
fact that the simulated object code obviously has far less semantics comparing with the HLL 
program. However, we consider that our developed random degrees could indicate the chance for 
uncovering this new relevant infomation. A high random degree might indicate a huge 
complexity and therefore, small chances to discover the right useful information. 

5.1. Random Degree Metrics for Characterizing Unbiased Branches 
Behavior 

This Section presents, based on our bibliographical research [Rab89, Gam99, Cor01, and Vol02], 
some practical ideas proposed in [Vin08b] for characterizing sequences generated by unbiased 
branches from the random degree viewpoint.  

5.1.1. Random Degree Metric Based on Hidden Markov Models 

New relevant information could reduce the string’s entropy and thus its random degree. 
Unfortunately this information might be very difficult or even impossible to be found. As a 
consequence we think it would be interesting trying to predict a sequence using HMMs like 
those developed in [Rab89, Gel06c]. A HMM is a doubly embedded stochastic process with a 
hidden stochastic process that can only be observed through another set of stochastic processes 
that generate the sequence of observable symbols. A generic HMM is illustrated in Figure 5.1, 
where qt is the hidden state at time t, Ot is the observation at time t, A is the matrix of transition 
probabilities between hidden states, and B is the matrix of observation probabilities within each 
hidden state. 
 

q1 q2 q3 qT
A A A A

B B B B

O1 O2 OTO3

Hidden State Sequence (Q):

Observation Sequence (O):

q1 q2 q3 qT
AA AA AA AA

BB BB BB BB

O1 O2 OTO3

Hidden State Sequence (Q):

Observation Sequence (O):  
Figure 5.1. Hidden Markov Model 
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HMM predictors are very powerful adaptive stochastic models. Our hypothesis is that 
HMMs could compensate relevant information miss-knowledge through its underlying stochastic 
process that is not observable. HMM’s prediction accuracy might be considered as an ultimate 
prediction limit. Therefore, we propose HMM prediction accuracy as another practical metric for 
calculating the random degree associated with a sequence of symbols. Of course, all these 
random degree metrics will be applied to our unbiased branches behaviors in order to estimate 
how much random they are. 

In this paragraph we present a Hidden Markov Model of order R, 1≥R , based on our work 
published in [Gel06c]. There are multiple possibilities for doing this but we present here only 
one we considered the most appropriate due to its simplicity. The key of our proposed model is 
represented by the so-called hidden super-states, a combination of R primitive hidden states. 
Therefore, the main difference, comparing with a first order HMM, consists in the fact that the 
stochastic hidden Markov model is of order R instead of order one. This new model is justified 
because we suppose that in some specific applications, there are longer correlations within the 
hidden state model. In other words, we suppose that the next hidden state is better determined by 
the current super-state rather than by the current primitive state. As it can be further seen, the 
new proposed model is similar with the well-known HMM of order one, excepting the fact that 
the generic primitive hidden state becomes now a generic super-state. 

As we previously emphasized, the prediction accuracy of a symbols sequence provided by 
a HMM predictor could define the random degree of that sequence. Obviously, it requires 
modifying the number of hidden states for the HMM predictor in order to maximize the 
prediction accuracy. Particularly, it is interesting to see whether this idealized powerful predictor 
would successfully predict the sequences generated by unbiased branches. An affirmative answer 
would mean that the relevant prediction information exists but is hard to identify it, differing 
from one branch to another. Otherwise, if the answer is negative, the intrinsic random degree 
(determinist chaos) of these branches would be very significant. 

5.1.2. Random Degree Metric Based on Discrete Entropy 

Considering a sequence S of symbols belonging to the set }...{ 21 kXXXX = , another practical 
approach for characterizing the randomness of S might be based on its entropy: 

0)(log)()(
1

2 ≥−= ∑
=

k

i
XiPXiPSE      (5.1) 

Obviously its maximum ( k2log ) is obtained for symbols of equal probabilities in S. Therefore, 
we propose a random degree (RD) for a branch’s binary output sequence given by the formula 

]log,0[)()()( 2 kSESDSRD ∈⋅=      (5.2) 

where D(S) represents the shuffle degree (distribution index) and it was defined in formula (3.2). 
A high RD value might involve a high random degree. Of course, our proposed RD(S) is not 
theoretically perfect. As an example, the sequence 01010101010101... maximizes both D and E 
but despite of this fact it is very deterministic and, therefore, very predictable. 

5.1.3. Random Degree Metric Based on Compression Rate 

The compression rate of a symbols sequence (or the space savings due to its compression), 
provided by the well-known lossless compression algorithms such as Huffman and Gzip, could 
represent another effective metric for characterizing the random degree of that sequence.  

Huffman proposes an entropic encoding greedy algorithm, effective and very useful in 
lossless compression, commonly used as final compression stage. The basic idea is to map an 
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alphabet to a representation for that alphabet, composed of variable length strings, so that 
symbols with a higher occurance probability have a smaller representation than those that occur 
less often. 

The kernel of the Gzip utility is the DEFLATE algorithm [Deu96], that represents a 
combination between the LZ77 algorithm [Ziv77] (dictionary encoding technique) and the 
Huffman algorithm (statistical encoding technique). The compression is performed in two 
successive stages: i) the identification and replacement of duplicate strings with pointers (LZ77) 
and ii) replacement of the previously obtained symbols with new, weighted symbols based on 
frequency of use (Huffman). 

In order to evaluate the compression rate of the sequences generated by biased and 
unbiased branches behavior, we used the following two metrics:  

%100⋅=
SizeCompressed
SizeedUncompressRatenCompressio     (5.3) 

%1001 ⋅







−=

SizeedUncompress
SizeCompressedSavingsSpace     (5.4) 

In our opinion, the compression rate and obviously, the space savings of sequences generated by 
unbiased branches behavior should be lower than those obtained for sequences generated by 
biased branches. 

5.1.4. Random Degree Metric Based on Kolmogorov Complexity 

The Kolmogorov-Chaitin complexity (or program size algorithmic complexity) of code sequence 
that generates unbiased branches could be a useful metric for describing the random degree. 
According to this metric, the length of the shortest program for a universal Turing Machine that 
correctly reproduces the observed data is a measure of complexity [Kol65]. A sequence X has 
Kolmogorov complexity K(X) equal to the length of the shortest program p for a (prefix) 
universal Turing Machine U that produces X and then halts: 

)(min)(
)(:

plXK
XpUp =

=        (5.5) 

where l(p) is the length of p in bits. Kolmogorov complexity identifies a sequence X as random if 
)()( XKXl −  is small: random sequences are those that are irreducibly complex. Thus, the 

unbiased branches complexity should be higher than the other conditional branches complexity. 
Nevertheless, the Kolmogorov complexity has a static nature while it tries to characterize the 
dynamic behavior of a certain branch. On the other hand, this metric is the single one that 
emphasizes the semantic complexity of the generator code sequence. 

5.2. Evaluation Results 

We selected from each benchmark strongly unbiased contexts having low polarization indexes 
])565.0,501.0[)(( ∈SP  and strongly biased contexts with high polarization indexes 
])997.0,979.0[)(( ∈SP  that were very frequently processed (hundreds of thousands instances 

per a certain context). The polarization index was defined in formula (3.1). Each context has 
associated a binary string representing its behavior (taken / not taken). This binary string 
represents the input sequence for the HMM predictor used by us in paragraph 5.2.1. During the 
paragraph 5.2.2 we calculated the random degrees associated to the same binary strings. In 
paragraph 5.2.3 we calculated the compression rates corresponding to the same branches 
behaviors. 
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5.2.1. Random Degree Evaluation with HMMs 

During this paragraph we considered a per branch local history of 64 bits. Using a longer history 
significantly complicated our developed HMM predictors and grew up the computing time. 
Anyway, our proposed metric is quantitatively very relevant. We evaluated prediction accuracies 
on strongly unbiased branches using a HMM predictor of order one (R=1) and two (R=2) for 
different numbers of hidden states (N). For the majority of the benchmarks considering two 
hidden states generate the best accuracies. The average prediction accuracy obtained using the 
quasi-optimal HMM (R=1, N=2) is far greater on biased contexts than on unbiased contexts. 
Figure 5.2 comparatively presents, for unbiased and biased branches, the average prediction 
accuracies obtained by the quasi-optimal HMM (R=1, N=2). 
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Figure 5.2. Prediction accuracies using the best evaluated HMM (R=1, N=2) 

There is a significant difference between the average prediction accuracy on biased branches 
(98.43%) and on unbiased branches (65.03%). As far as we know, we are the first researchers 
investigating HMMs as an ultimate branch prediction limit. Unfortunately even these powerful 
predictors cannot accurately predict unbiased branches. This fact suggests that unbiased branches 
are “intrinsic random” in some way, being generated by very complex program structures as we 
will further show. 

5.2.2. Random Degree Evaluation Based on Discrete Entropy 

In this paragraph we considered as the random degree of a binary sequence RD(S), the product 
between discrete entropy E(S) and shuffle degree D(S) associated to S. Thus, 

)()()( SESDSRD ⋅= . Figure 5.3 shows statistical results concerning the random degree of the 
biased and unbiased binary sequences obtained through the previously exposed methodology. 
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Figure 5.3. The random degree of biased and unbiased branches 
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Since our initial supposition was that biased branch sequences should have a lower random 
degree, the simulation results confirm that the considered RD(S) metric represents a good 
measure for random degree of binary sequences. A random degree around 40% shows that 
respective unbiased branch is difficult or, practically, even impossible to be accurately predicted. 

5.2.3. Random Degree Evaluation Based on Compression Rate 

Further we transformed into extended ASCII files the binary behavior sequences generated by 
unbiased and biased branches, obtained through the methodology exposed in paragraph 5.2. We 
grouped 8-bit sequences and generated the corresponding ASCII codes. We compressed these 
files using the Gzip utility [Gzip] and an own developed application that implements the 
Huffman encoding [Cor01]. 

We based our statistics on two commonly used metrics in data compression, presented in 
paragraph 5.1.3. In Figure 5.4, we illustrate the space savings obtained by compressing biased 
and unbiased branches using the previously described algorithms (Gzip and Huffman). 
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Figure 5.4. Space savings using the Gzip and Huffman algorithms 

From the previous chart we can extract the following conclusions: first, the space savings 
obtained through unbiased branches compression (19.15% with Gzip) are significantly lower 
than those obtained through biased branches compression (90.37% with Gzip). The second 
conclusion refers to the ascendancy of the Gzip algorithm toward the Huffman algorithm that is 
understandable taking into account that the Huffman encoding represents the final stage of the 
Gzip compression. However, it can be observed that the space saving on the twolf benchmark 
becomes negative (-0.29%) even if the Gzip compression algorithm is used. The LZ77 
algorithm’s influence is almost inexistent leading to the conclusion that is impossible to find 
many repetitive patterns. Actually, we obtained similar results in [Gel07b], where we have 
shown that using some hybrid Markov predictors, the unbiased branches prediction accuracy is 
very low. 

Since the Huffman encoding is very effective for strings characterized by low entropy 
symbols, the negative values of space savings on four SPEC benchmarks also illustrates the lack 
of repetitive pattern from unbiased sequences and the impossibility to predict them with higher 
accuracy using Markov predictors. The negative compression is caused by the necessity to store 
the encoding and decoding information in addition to the encoded sequence (header that contains 
the mapping of each distinct symbol from the input sequence into the new result symbol). 
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5.2.4. Random Degree Evaluation Based on Kolmogorov Complexity 

First, we focused on the most important unbiased branch from the Perm benchmark (having 
PC=58) that exhibits an unpredictable behavior even if its context length is very long (53 bits of 
global history). Actually, the percentage of unbiased branches (1.53%) from the whole Perm 
program is exclusively due to the branch from PC=58. 

We developed a particular fast path-based perceptron (FPBP) predictor [Rad07] with a 
global history length of 53 bits and 100 entries. FPBP predicted the branch 58, in its unbiased 
contexts, with 65.91% accuracy. The number of FPBP mispredictions was 286. The complete 
PPM predictor exploits the recursive character of Perm benchmark. The prediction accuracy 
(PA) obtained by our developed PPM using a global context length of 500 bits and a search 
pattern of 30 bits, on the branch 58, is 94.30%. As far as this solution is unfeasible for hardware 
implementation, we tried a simplified PPM, but the result was dissatisfactory (PA=79.85%). The 
global prediction accuracy provided by the complete PPM was 98.41%, lower than that 
generated by the FPBP predictor (99.04%). Actually, from 869 PPM mispredictions, the branch 
58 generates 287. Thus, we can conclude that both PPM and FPBP predictors do not succeed to 
accurately predict an unbiased branch. The high prediction accuracy (94.30%) on the branch 58 
provided by the PPM is actually centered on the whole behavior of the branch and not only on its 
unbiased context. 

As we have already pointed out, the length of the shortest program for a universal Turing 
machine that correctly reproduces the observed data is a measure of complexity [Gam99]. Thus, 
analyzing the behavior of the branch 58 from the Kolmogorov complexity perspective (we noted 
it K(58)), it can be observed that the minimal length of machine-code that generates this 
unbiased branch is equal with the Permute routine length (measured in instructions). This 
happens because, in order to reach the branch 58, the Permute routine should completely execute 
at least once (due to recursive call). Thus, K(58)=42 HSA instructions or 8 C instructions. 

Among the other conditional branches only one (PC=35) proved to be unbiased for shorter 
global history length (≤32 bits). However, increasing the global history length to 53 bits the 
branch 35 became fully biased, and, therefore predictable. Analyzing the Kolmogorov 
complexity of branch 35 we calculated K(35)=12 HSA instructions or 3 C instructions. It 
involves that K(35)<K(58). This happens because the test of the branch 35 does not require the 
complete execution of the Permute routine. Therefore, the complexity of the code sequence that 
generates the unbiased branch (58) induces a determinist chaos, frequently occurred in many 
science domains. In addition, based on the analysis of many integer recursive benchmarks we 
have reasons to believe that recurrence combined with some certain conditional branches will 
generate branches with unbiased behavior and thus with high Kolmogorov complexity. 
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6. Exploiting Selective Instruction Reuse and Value 
Prediction in a Superscalar Architecture 

In the previous chapters we have shown that unbiased branches cannot be accurately predicted 
irrespective of the prediction information type used in the state-of-the-art branch predictors 
[Vin06, Gel07b]. Furthermore, the behavior sequences generated by these difficult branches are 
characterized by high random degrees. Since the overall performance of modern superscalar 
processors is seriously affected by misprediction recovery, these difficult branches represent a 
source of important performance penalties. As we pointed out in [Gel06b], 28.68% of branches 
are dependent on long-latency instructions (critical Loads, Multiply, Division), and 5.61% are 
unbiased and dependent on a previously committed long-latency instruction. Such hard-to-
predict branches that depend on critical Loads (with miss in the L2 data cache) occur in pointer 
chasing applications based on linked list traversal: 

while (node)   // Branch 
node = node next // Load 

Since the branch from the above example depends on the Load, a branch misprediction cannot be 
solved until the Load returns the value. If the Load has a high L2 cache miss rate, the 
misprediction penalties of the branch will have significant impact on the overall performance. 
For example, the average misprediction penalty of such a branch, measured as the latency 
between fetching the branch instruction and resolving the misprediction, is about 540 cycles, 
considering a L2 cache miss penalty of 300 cycles [Gao08]. Thus, the forementioned 
dependences involve high-penalty mispredictions becoming serious performance obstacles and 
causing significant performance degradation in executing instructions from wrong paths. 
Therefore, the negative impact of branches, and especially of unbiased branches, over global 
performance should be seriously attenuated by anticipating the results of long-latency 
instructions, including critical Loads. On the other hand, hiding instructions long latencies in a 
pipelined superscalar processor represents an important challenge itself. Therefore, in this 
chapter we present based on [Gel08b, Vin05a] some original anticipatory methods developed for 
superscalar architectures. 

6.1. Anticipating Long-Latency Instructions Results 

Our main objective is to develop a superscalar architecture that selectively anticipates the values 
produced by high-latency instructions. We will focus on Multiply, Division and Loads with miss 
in the L1 data cache. The reusability degree of Mul and Div instructions, measured with an 
unlimited Reuse Table, was 28.9% on the integer benchmarks and 61.9% on the floating-point 
benchmarks [Gel08a]. These instructions would be solved by a Dynamic Instruction Reuse 
scheme. The reusability degree of Load values was 77.4% on the integer benchmarks and 76.4% 
on the floating-point benchmarks [Gel08a]. However, an additional Reuse Buffer for Load Value 
(Data) Reuse is not necessary, because a similar reuse mechanism is already provided by the 
existing L1 and L2 data caches. Therefore, the Load instructions with miss in the L1 data cache 
(selective approach) would be solved through value prediction. 



Exploiting Selective Instruction Reuse and Value Prediction in a Superscalar Architecture 

32 

6.1.1. Selective Dynamic Instruction Reuse 

For the Mul and Div instructions we will use the Sv reuse scheme. The information about 
instructions is maintained in a direct mapped Reuse Buffer (RB). The RB is accessed during the 
issue stage, because most of the Mul/Div instructions found in the RB during the dispatch stage 
do not have their operands ready (91.5% on the integer benchmarks and 64.6% on the floating-
point benchmarks). An additional RB access in the dispatch stage does not have sense due to the 
insignificant expected performance gain obtained with supplementary costs. Each RB entry has 
the following fields: Tag (the higher part of the PC), SV1 and SV2 (the source values of the 
Mul/Div instruction), Result (the output value of the Mul/Div instruction). Since we do not reuse 
Loads with this scheme, the Address and Mem Valid fields used in [Sod97] are unnecessary. In 
this way, our implemented structure is simpler and more cost effective (from hardware budget 
and power consumption point of view) than the initial scheme proposed by Sodani and Sohi. 
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PC of MUL / DIV

Tag SV1 SV2 Result
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Tag SV1 SV2 Result

 
Figure 6.1. Reuse scheme for Mul & Div instructions 

If a certain Mul/Div instruction is found in the RB, a reuse test is generated. If the actual 
operand values, taken from the ROB, match the SV1 and SV2 fields from the selected RB entry, 
the instruction is not sent to a functional unit, its result value being already available for 
dependent instructions. Every non-reused Mul/Div instruction updates the RB in the commit 
stage: writes the tag, the source values and the result into the corresponding RB entry. From the 
power consumption point of view, the Reuse Buffer was modeled as a cache array structure 
using the same power models as the other array structures are using. Obviously, the main benefit 
of reusing long-latency instructions consists in unlocking dependent instructions (see Figure 6.2). 
In Figures 6.2, 6.4 and 6.7, all stages except the Execute stage are a single cycle length; the 
Execute stage has variable length, depending upon the latency of the executing instruction. 
 

Fetch Decode Issue Execute Commit

RBLookup (PC, V1, V2) Result (if hit)

Fetch Decode Issue Execute Commit

RBLookup (PC, V1, V2) Result (if hit)  

Figure 6.2. Pipeline with Reuse Buffer (RB) 

We also detected trivial operations implementing a technique first introduced in [Ric93] by 
Richardson. We considered the following operations: V*0, V*1, 0/V, V/1 and V/V. A simple 
hardware scheme for detecting trivial computations and selecting the result is presented in 
[Gol07] and consists in comparators for the input operands and selectors for the write-back. If 
during the dispatch stage, a Mul instruction is detected with an operand value of 0 or 1, the result 
is provided by the detector, avoiding the functional unit allocation and execution. In the same 
manner, if a Div instruction is detected with the first operand being 0, the second operand 1, or 
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with identical operands, the result is provided by the detector being thus available at the end of 
the dispatch stage. The Reuse Buffer is accessed during the issue stage for the reuse test only if 
the Mul/Div operation is not detected in the dispatch stage as being trivial. 

6.1.2. Selective Load Value Prediction 

We will integrate into our architecture a simple Last Value Predictor used only for Loads with 
miss in the L1 data cache (selective approach). In this way, the implemented structure is more 
efficiently used; the collisions number will be lower against the approach that predicts all Load 
instructions, having tables of the same size. The information about Load instructions is 
maintained in a direct mapped Load Value Prediction Table (LVPT). The LVPT is accessed 
during the issue stage, only if the current Load instruction involves a miss in the L1 data cache 
(critical Load). Each LVPT entry has the following fields: Tag (the higher part of the PC), 
Counter (a 2-bit saturating confidence counter with two unpredictable and two predictable 
states), and Value (the Load instruction’s result). 
 

Load Value Prediction
Table (LVPT)

PC of Load with miss
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Tag Counter Value

Load Value Prediction
Table (LVPT)
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Figure 6.3. The Last Value Predictor architecture 

In the case of a hit in the LVPT, the corresponding Counter is evaluated. If the confidence 
counter is in an unpredictable state, the Load is executed without prediction. Otherwise the Value 
from the selected LVPT entry is speculatively forwarded to the dependent instructions. In the 
commit stage, when the real value is available, in the case of misprediction, a recovery is 
necessary in order to squash speculative results and selectively re-execute the dependent 
instructions with the correct values (see Figure 6.4). We considered in our simulations a value 
prediction latency of one cycle and, in the misprediction case, a recovery taking 7 cycles. 
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Figure 6.4. Pipeline with Load Value Predictor 

During the commit stage, every critical Load updates the LVPT: only the Counter field in 
the case of correct prediction or the Value and the Counter fields in the case of misprediction. In 
the case of miss in the LVPT, the Tag and the Value are inserted into the selected entry, and the 
Counter is reset (strongly unpredictable state). 
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6.1.3. Experimental Results 

We developed a cycle-accurate execution driven simulator derived from the M-SIM simulator 
[Sha05] supporting the unmodified, statically linked Alpha AXP binaries as well as the power 
estimation as supplied by the Wattch framework [Bro00]. M-SIM extends the SimpleScalar 
toolset [Bur97] with accurate models of the pipeline structures, including explicit register 
renaming, and support for the concurrent execution of multiple threads. We modified M-SIM to 
incorporate our superscalar architecture with selective instruction reuse and value prediction in 
order to measure the relative IPC speedup and relative energy-delay product gain when the 
results of long-latency instructions are anticipated. For the relative IPC speedup calculation we 
used the following formula: 

%100⋅
−

=
base

baseimproved

IPC
IPCIPC

SpeedupIPC      (6.1) 

where baseIPC  and improvedIPC  are the instructions executed per cycle with the baseline and 
improved architectures, respectively. 

The power consumption measurements are generated using an 80 nm CMOS technology. 
The detailed power modeling methodology, used in the simulator, is presented in [Bro00]. The 
dynamic power consumption in CMOS microprocessors is defined as: 

faVCP ddd ⋅⋅⋅= 2         (6.2) 

where C is the capacitance, generated using Cacti [Shi01], Vdd is the supply voltage, and f is the 
clock frequency. Vdd and f depend on the assumed process technology. The activity factor a 
indicates how often clock ticks lead to switching activity on average. The power consumption of 
the modeled units highly depends on the internal capacitances of the circuits. From the 
capacitance point of view, there are three categories of architectural structures: array structures, 
content-associate memories, and complex logic blocks. The first two categories are used to 
model the caches, branch predictors, the reorder buffer, the register renaming table, and the 
register file, while the last category is used to model functional units. 

For the energy measurements, we used the Energy-Delay Product, a widely used metric 
[Gon96, Bro00, Gol07]: 

2IPC
PowerTotalEDP =         (6.3) 

The Energy-Delay Product (EDP) represents the processor’s total power, divided by the squared 
IPC. In other words, the EDP is the energy consumption relative to the processor’s global 
performance (IPC). The EDP Gain represents the relative energy-delay product improvement. 
After each architectural improvement we determined the EDP Gain based on: 

%100⋅
−

=
base

improvedbase

EDP
EDPEDP

GainEDP      (6.4) 

where, baseEDP  is the energy-delay product of the baseline architecture, whereas improvedEDP  is 
the energy-delay product of the improved architecture. Thus, a positive value of the EDP Gain 
means an improvement of the relative energy consumption. 

We evaluated seven integer benchmarks (bzip, gcc, gzip, mcf, parser, twolf, vpr) and six 
floating-point benchmarks (applu, equake, galgel, lucas, mesa, mgrid). Although the RB 
structure dissipates additional dynamic power, reusing long-latency instructions increases the 
IPC and therefore lowers the relative energy consumption (see Figure 6.5). We determined the 
energy-delay product for the architecture without RB and for the architecture with RB of 
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different sizes, based on relation (6.3). The EDP Gain represents the relative energy-delay 
product improvement determined based on relation (6.4) for each RB size. 
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Figure 6.5. Relative IPC speedup and relative energy-delay product gain on the SPEC 2000 floating-

point benchmarks with RB and Trivial Operation Detection 

The speedup is insignificant in the case of the integer benchmarks, due to the significantly lower 
number of Mul and Div instructions. Consequently, the energy-delay product is better only for 
RB sizes between 16 and 128 entries, but the improvement is insignificant. These results are in 
concordance with Citron [Cit02] who also remarked the poor evaluation results (reuse degrees 
and speedups) obtained on the SPEC’95 integer benchmarks. Therefore a significant benefit of 
Mul/Div instructions reuse is achieved only for floating-point applications. 

Figure 6.6 presents the relative IPC speedup and the relative energy-delay product 
improvement obtained with Mul/Div Reuse Buffer of 1024 entries and Trivial Operation 
Detector for the Mul and Div instructions and with Last Value Predictor for critical Load 
instructions. We determined the energy-delay product for the architecture without RB and LVPT 
and for the architecture with an RB of 1024 entries and LVPTs of different sizes, based on 
relation (6.3). The EDP Gain represents the relative energy-delay product improvement 
determined based on relation (6.4) for each LVPT size. As it can be observed, the optimal LVPT 
size is 1024. 
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Figure 6.6. Relative IPC speedup and relative energy-delay product gain with a Reuse Buffer of 1024 

entries, the Trivial Operation Detector, and the Load Value Predictor 
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Both IPC speedup and EDP gain are significantly higher on the floating-point benchmarks 
compared to the integer benchmarks (see Figure 6.6). This difference occurs because the number 
of critical Loads is more than twice higher in the floating-point benchmarks. The difference is 
further accentuated by the percentage of predicted critical Loads (classified as predictable by 
LVPT confidence counters) which is 85% on the floating-point benchmarks and only 40% on the 
integer benchmarks [Gel08a]. Finally, the difference is also slightly increased by the higher 
prediction accuracy obtained on the floating-point benchmarks. 

The selective instruction reuse approach proposed by Golander and Weiss in [Gol07] 
achieves an average IPC speedup of 2.5% on the SPEC 2000 integer benchmarks, of 5.9% on the 
floating point benchmarks, and an improvement in energy-delay product of 4.80% and 11.85%, 
respectively. In comparison, our improved superscalar architecture achieves an average IPC 
speedup of 3.5% on the integer SPEC benchmarks, 23.6% on the SPEC floating-point 
benchmarks, and an improvement in energy-delay product of 6.2% and 34.5%, respectively. 

6.2. Contributions to Dynamic Value Prediction: CPU Context 
Prediction 

The main aim of this section consists in focalizing dynamic value prediction to the CPU context 
[Vin05a, Vin05b]. The idea of attaching a value predictor to each CPU register (register-centric 
predictor) instead of an instruction or memory-centric predictor is original and could involve 
new architectural techniques for improving performance and reducing the hardware cost of 
speculative microarchitectures. In an earlier work [Flo02], Florea et al. performed several 
experiments to evaluate the value locality exhibited by MIPS general-purpose integer registers. 
The results obtained on some special registers ($at, $sp, $fp, $ra) were quite remarkable (≈90% 
value locality degree) leading to the conclusion that value prediction might be successfully 
applied at least on these favorable registers. 

Whether the prediction process has been instruction (producer) or memory-centered with 
great complexity and timing costs, by implementing the well known value prediction schemes 
[Lip96a, Saz99] centered on the CPU’s registers will reduce the hardware cost. However, there 
are some disadvantages. Addressing the prediction tables with the instructions’ destination 
register name (during the decode stage) instead of the Program Counter will cause some 
interference. However, we have proved that, with a sufficiently large history a hybrid predictor 
could eliminate this problem and achieve very high prediction accuracy (85.44% at average on 
eight MIPS registers using SPEC’95 benchmarks and 73.52% on 16 MIPS registers using SPEC 
2000 benchmarks). The main benefit of the proposed VP technique consists in unlocking the 
subsequent dependent instructions. 

6.2.1. Register Value Predictors 

Statistical results based on simulation have proved that commonly used programs are 
characterized by strong value repetitions [Lip96a, Sod00]. The main causes for this phenomenon 
are: data and code redundancy, program constants, and the compiler routines that resolve virtual 
function calls, memory aliases, etc. The register value locality is frequently met in programs and 
shows the number of times each register is written with a value that was previously seen in the 
same register and dividing by the total number of dynamic instructions having this register as 
their destination field [Flo02, Gel03]. 

As we observed in [Vin05a, Gel03], the value locality on some registers is remarkable high 
(90%), and this predictability naturally leads us to the idea of implementing value prediction on 
these favorable registers. Dynamic value prediction on registers represents a new technique that 
allows the speculative execution of the read after write dependent instructions by predicting the 
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values of the destination registers during second half of the instruction’s decode stage (see 
Figure 6.7). The Value Prediction Table (VPT) is accessed with the name of the destination 
register. The register’s next value is predicted based on the last values belonging to that register. 
In the case of a valid prediction, the VPT will forward the predicted value to the subsequent 
corresponding RAW dependent instructions. After execution, when the real value is known, it is 
compared with the predicted value. If the value was correctly predicted the critical path might be 
reduced. In the case of a misprediction the speculatively executed dependent instructions are re-
issued for execution (recovery). 
 

Fetch Decode Issue Execute Commit

RVPRdest Predicted Value

Misprediction Recovery

Fetch Decode Issue Execute Commit

RVPRdest Predicted Value

Misprediction Recovery

 
Figure 6.7. The implementation of the register value prediction mechanism in the pipeline structure of a 

general microarchitecture 

In [Vin05a, Gel03] we developed and simulated several different basic value predictors, 
such as the last value predictor, the stride value predictor, the context-based predictor and hybrid 
value predictors to capture certain type of value predictabilities from the SPEC benchmarks and 
to obtain higher prediction accuracy. All these predictors were adapted to our proposed 
prediction model. 

6.2.1.1. Last Value Predictors 

The last value predictors (see Figure 6.8) predict the next value as the same as the last value 
stored in the corresponding register. Exploiting the correlation between register names and the 
values stored in those registers will decrease instruction latencies. Each register used in the 
prediction mechanism has an entry in the VHT. In this way the number of entries in the 
prediction table is the same as the number of logical registers. 
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Figure 6.8. Last value predictor 
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Each entry of the prediction table has its own automaton in the State field (a 2-bit 
saturating confidence counter with two unpredictable and two predictable states). The last value 
from the Val field is predicted only if the automaton is in a predictable state. Obviously, it is 
necessary to verify the value generated by the value history table (VHT). The automaton’s state 
will be changed according to the comparison between the predicted and actual values. The Val 
field is also updated.  

6.2.1.2. Stride Predictors 

In this case, considering that 1−nv  and 2−nv  are the most recent values, the new value nv  will be 
calculated using the recurrence formula: )( 211 −−− −+= nnnn vvvv , where )( 21 −− − nn vv  is the stride 
of the sequence. Figure 6.9 shows the structure of this predictor. 
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Figure 6.9. Stride predictor 

The Str1 and Str2 fields keep the last two strides. Each time a register is used as 
destination, its current stride is computed: ValVStr −= , where V is the actual value of that 
register and Val is its last value stored in the VHT. The automaton is incremented if the 
prediction is correct otherwise it is decremented. If 21 StrStr = , the predicted value is calculated 
adding the stride Str2 to the value stored in the VHT’s Val field. If the automaton is in the 
predictable state, the prediction is furnished. 

6.2.1.3. Context-Based Predictors 

The context-based predictors predict the value that will be stored in a register based on the last 
values stored in that register. A context is a finite sequence of values with repeated appearance as 
in a Markov chain. The Prediction by Partial Matching (PPM) algorithm has been already 
presented in Section 4.1. A PPM-based predictor furnishes the value that followed the considered 
context with the highest frequency. Obviously, the predicted value depends on the context 
length. A longer context frequently drives to higher prediction accuracy but sometimes it can 
behave as noise. 
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Figure 6.10. Structure of a context-based PPM predictor 

Figure 6.10 shows the structure of the context-based predictor. Each entry from the VHT 
has an associated automaton that is incremented when the prediction is correct and is 
decremented in the case of a misprediction. The fields V1, V2, …, V4 store the last four values 
associated with each register (considering that the predictor works with a history of four values). 
If the automaton is in the predictable state, it predicts the value that follows the context with the 
highest frequency. 

6.2.1.4. Hybrid Predictors 

It has been shown that a single type of predictor does not offer the best results. Some types of 
value sequences generated in programs are better predicted with a certain predictor, and others, 
with another type of predictor [Wan97]. Therefore, it is natural to consider the idea of hybrid 
prediction: two or more value predictors working together dynamically in the prediction process. 
Figure 6.11 shows a hybrid predictor composed of a context-based PPM predictor and a stride 
predictor. The context-based predictor always has priority, as in [Wan97]. In this way the value 
generated by the stride predictor is only used if the context-based predictor cannot generate a 
prediction. 
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Figure 6.11. Hybrid predictor (PPM & stride) 
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Figure 6.12 presents the hybrid predictor composed of a 2-Level predictor and a Stride predictor 
adapted for register-centric prediction. It has the same functionality as the instruction-centric 
approach proposed by Wang and Franklin in [Wan97], but it is indexed with the destination 
register name instead of the PC. This fixed prioritization used in Figures 6.11 and 6.12 seems not 
to be optimal. Probably a dynamic prioritization based on some confidences should be better (the 
predictor having the highest confidence degree will have priority). 
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Figure 6.12. Hybrid predictor (two-level & stride) with fixed prioritization 
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Figure 6.13. Hybrid predictor (two-level & stride) with adaptive prioritization 
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The adaptive hybrid predictor presented in Figure 6.13 uses a saturating confidence counter for 
each component predictor: C2Lev for the 2-Level predictor and CStr for the Stride predictor. 
Thus, it dynamically selects the most confident predictor. Other adaptive neural metapredictors 
have been proposed and evaluated in [Vin04a], but with less efficiency mainly due to the 
complexity of the backpropagation learning algorithm. Some simplified perceptron-based 
metapredictors might be more efficient and feasible for hardware implementation  

6.2.2. Experimental Results 

We developed a cycle-accurate execution driven simulator derived from the sim-outorder 
simulator of the SimpleScalar toolset [Sim]. The baseline superscalar processor supports out-of-
order instruction issue and execution. We modified it to incorporate our proposed register value 
predictors. In this paragraph, we are focusing only on the predictable registers which have 
prediction accuracy higher than a certain threshold (60% and 80%, respectively), measured using 
the PPM-based hybrid predictor on the SPEC benchmarks. The registers having a prediction 
accuracy higher than 60% are: 1, 5, 7–13, 15, 18–20, 22, 29–31 on SPEC’95, and, 1, 6–8, 10–16, 
18–25, 29–31 on SPEC 2000. The statistic results on the SPEC’95 benchmarks exhibit a using 
degree of 19.36% for these 17 registers. This means that 19.36% of instructions use one of these 
registers as a destination. The equivalent average result on SPEC 2000 is 13.24% using 22 
general purpose registers. 

In Figures 6.14 and 6.15 we compared the previously presented value prediction 
techniques: last value prediction (Figure 6.8), stride prediction (Figure 6.9), PPM prediction 
(Figure 6.10) and PPM-based hybrid prediction (Figure 6.11). We used in the prediction process 
only the 17 favorable registers on the SPEC’95 benchmarks and 22 favorable registers on the 
SPEC 2000 benchmarks. The PPM and the hybrid predictors use a history of 256 values and a 
search pattern of 4 values. 
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Figure 6.14. Prediction accuracy using 17 favorable registers (PA>60%) on the SPEC’95 benchmarks 

These results (see Figures 6.14 and 6.15) represent the global prediction accuracies of the 
favorable registers for each benchmark. The hybrid predictor synergy can be observed. It 
involves an average prediction accuracy of 78.25% on the SPEC’95 benchmarks and 72.93% on 
the SPEC 2000 benchmarks. 
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Figure 6.15. Prediction accuracy using 22 favorable registers (PA>60%) on the SPEC 2000 benchmarks 

Now we will try a more elitist selection considering only the registers with prediction 
accuracy higher than 80% (see Figures 6.16 and 6.17). There are 8 registers that fulfill this 
condition (1, 10–12, 18, 29–31) on the SPEC’95 benchmarks and 16 registers (1, 8, 11–15, 20–
25, 29–31) on the SPEC 2000 benchmarks (registers 1, 29–31 are included even if they do not 
fulfill this condition because they exhibit a high degree of value locality [Vin05a] and they also 
have special functions). The global using rate of these registers is 10.58% on the SPEC’95 
benchmarks, and 9.01% on the SPEC 2000 benchmarks. 
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Figure 6.16. Prediction accuracy using 8 favorable registers (PA>80%) on the SPEC’95 benchmarks 
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Figure 6.17. Prediction accuracy using 16 favorable registers (PA>80%) on the SPEC 2000 benchmarks 
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Figures 6.16 and 6.17 emphasize, for each benchmark, the global prediction accuracy 
obtained with the implemented predictors using 8 and 16 selected registers, respectively 
(threshold over 80%, according to the previous explanations). Each bar represents the prediction 
accuracy for a certain benchmark, measured by counting the number of times when prediction is 
accurate for any of the favorable registers and dividing by the total number when these registers 
are written. The simulation results offered by the last value predictor are relatively close to the 
stride predictor’s results. The best average prediction accuracy was obtained with the hybrid 
predictor 85.44%, which was quite remarkable (on some benchmarks over 96%). Considering an 
8-issue out-of-order superscalar processor simulations show that register centric value prediction 
produce average speedups of 17.30% for the SPECint95 benchmarks, respectively of 13.58% for 
the SPECint2000 benchmarks. 

Finally, in Figures 6.18 and 6.19 we have compared the PPM-based hybrid predictor 
(PPM-Stride) with the two-level-based hybrid predictors: 2Lev-Stride with fixed prioritization 
(presented in Figure 6.12) and 2Lev+Stride with adaptive prioritization (presented in Figure 
6.13), both using a history of 32 values and a pattern of 4 values. 
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Figure 6.18. Comparing the hybrid predictors on the SPEC’95 benchmarks 
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Figure 6.19. Comparing the hybrid predictors on the SPEC 2000 benchmarks 

Figures 6.18 and 6.19 show that the hybrid predictor with adaptive prioritization composed of a 
two-level and a stride predictor is comparable to or even outperforms the PPM-based hybrid 
predictor, at significantly lower implementation cost and complexity. 
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7. Enhancing the Simultaneous Multithreading 
Paradigm Through Selective Instruction Reuse and 

Value Prediction 

In the previous chapter we improved a superscalar microarchitecture with selective instruction 
reuse and value prediction techniques focalized on long-latency instructions. We obtained 
significant IPC speedups and energy-delay product gains, proving the necessity of these 
techniques for higher instruction-level parallelism. A very important question is: would these 
techniques improve even multithreading architectures? Additionally a multithreaded processor 
would naturally hide the long instructions latencies, including the memory-wall, and also some 
of the branches’ problems. This chapter answers the question by evaluating a simultaneous 
multithreaded architecture enhanced with selective instruction reuse and value prediction to 
anticipate the results of long-latency instructions. 

7.1. Selective Instruction Reuse and Value Prediction in SMT 
Architectures 

As a final objective of our research, we quantified the impact of our developed Selective 
Instruction Reuse and Load Value Prediction techniques in a simultaneous multithreaded 
architecture (SMT) that involves per thread Reuse Buffers and LVP tables [Vin08a].  

We developed a cycle-accurate execution driven simulator derived from the M-SIM 
simulator [Sha05] supporting the unmodified, statically linked Alpha AXP binaries as well as the 
power estimation as supplied by the Wattch framework [Bro00]. M-SIM supports single 
threaded execution (superscalar mode) as well as the multithreaded mode in which multiple 
threads of control are executed simultaneously, according to the Simultaneous Multithreaded 
(SMT) model [Egg 97]. In the SMT mode, some processor structures (i.e. issue queue, physical 
register files, functional units, caches) are shared among the threads, and others (rename tables, 
ROBs, Load/Store Queues, branch predictors) are private to each thread. Figure 7.1 presents a 
SMT architecture enhanced with our selective instruction reuse and value prediction methods 
proposed in Section 6.1. 
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Figure 7.1. SMT architecture enhanced with selective instruction reuse and value prediction 

Threads maintain separate PC counters, but share the fetch unit and I-Cache. Threads also 
share the available bandwidth in the front end, including fetch, decode and renaming. The M-
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SIM implements the well known ICOUNT fetch policy, by default, fetching from up to two 
threads per cycle. The M-SIM has implemented separate branch predictors per thread, which was 
shown in [Ram03] as providing the best performance for multithreaded processors. The Reorder 
Buffers (ROB) as well as our Reuse Buffers (RB) and Load Value Prediction Tables (LVPT) are 
private. Each thread maintains its own rename table because it has its own set of architectural 
registers. After renaming, instructions from all threads are dispatched into the shared Issue 
Queue. In the Issue Queue, instructions from all threads participate in instruction wakeup and 
compete for the issue bandwidth in selection. Instructions that are selected for issue continue to 
register file access. There are separate integer and floating-point physical register files, both 
being shared among threads. After register file access is complete, instructions begin execution 
on the functional units, which are also shared. Loads and Stores access the shared data cache. In 
order to maintain the correct ordering of memory accesses, the Load/Store Queue (LSQ) is used. 
The M-SIM uses separate LSQs per thread, so that an unresolved address from one thread does 
not prevent Loads in other threads from issuing. After execution, instructions write back to the 
register files. Commitment is done in order for each thread. 

7.2. Experimental Results 

For the superscalar architecture we evaluated seven integer benchmarks (bzip, gcc, gzip, mcf, 
parser, twolf, vpr) and six floating-point benchmarks (applu, equake, galgel, lucas, mesa, 
mgrid). In SMT mode, the M-SIM runs multiple benchmarks as different threads in parallel. 
Therefore, we combined benchmarks into groups of 2, 3 or 6 depending on the simulated SMT 
architecture. Thus, we used {bzip, gcc}, {gzip, parser}, {twolf, vpr}, {applu, equake}, {galgel, 
lucas}, {mesa, mgrid} for our 2-way SMT, {bzip, gcc, gzip}, {parser, twolf, vpr}, {applu, 
equake, galgel}, {lucas, mesa, mgrid} for the 3-way SMT, and {bzip, gcc, gzip, parser, twolf, 
vpr}, {applu, equake, galgel, lucas, mesa, mgrid} for the 6-way SMT. 

The dynamic power consumption measurements are generated using an 80 nm CMOS 
technology: 

faVCP ddd ⋅⋅⋅= 2         (7.1) 

where C is the capacitance, generated using Cacti [Shi01], Vdd is the supply voltage, and f is the 
clock frequency. Vdd and f depend on the assumed process technology. The activity factor a 
indicates how often clock ticks lead to switching activity on average. For the energy 
measurements, we used the Energy-Delay Product, a widely used metric [Gon96, Bro00, Gol07]: 

2IPC
PowerTotalEDP =         (7.2) 

The Energy-Delay Product (EDP) represents the processor’s total power, divided by the squared 
IPC. 

We measured the IPC and the dynamic power consumption of the proposed SMT 
architecture by varying the number of threads. Figures 7.2 and 7.3 present the IPC obtained by 
evaluating our developed superscalar and SMT architectures with and without Reuse Buffer and 
Load Value Predictor. According to our previous results obtained with the enhanced superscalar 
architecture (presented in paragraph 6.1.3), we optimally sized the RB and the LVPT to 1024 
entries. Figures 7.2 and 7.3 show that the RB and LVPT structures improve the IPC on all 
evaluated architectural configurations (superscalar and SMT). As far as concern floating-point 
benchmarks, the highest improvement was obtained with one thread, and as the number of 
threads grows, the IPC improvement becomes lower (see Figure 7.3). 
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Figure 7.2. IPC obtained with and without RB & LVPT on the integer SPEC 2000 benchmarks 
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Figure 7.3. IPC obtained with and without RB & LVPT on the floating-point SPEC 2000 benchmarks 

With fewer threads, the ten shared functional units are underused and therefore the 
selective instruction reuse and value prediction techniques have an important improvement 
potential. With a higher number of threads, the same ten functional units are highly used by the 
SMT engine, thus both the instruction reuse and value prediction mechanisms becoming less 
important. Therefore, especially on floating-point benchmarks, with six threads we obtained the 
best IPC but the lowest relative IPC speedup (see Figures 7.3 and 7.4). 

Finally, we evaluated, for different number of threads, the IPC speedup and the EDP gain 
of a SMT architecture enhanced with Selective Instruction Reuse and Value Prediction against a 
classical SMT architecture. The IPC speedups obtained with our superscalar (one thread) and 
SMT architecture (2, 3 and 6 threads) are presented in Figure 7.4, whereas Figure 7.5 presents 
the EDP gains achieved with the same architectures. 
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Figure 7.4. Relative IPC speedup (enhanced SMT vs. classical SMT) by varying the number of threads 
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Figure 7.5. Relative energy-delay product gain (enhanced SMT vs. classical SMT) for different number 

of threads 

As Figures 7.4 and 7.5 depict, the RB and LVPT structures achieved IPC speedups and 
EDP gains on all the simulated configurations. The best improvements on the integer 
benchmarks have been obtained with 2 threads: an IPC speedup of 5.95% and an EDP gain of 
10.44%. Although, on the floating-point benchmarks, we obtained the highest improvements 
with the enhanced (LVP+Reuse) superscalar architecture, the SMT with 3 threads also provides 
an important IPC speedup of 16.51% and an EDP gain of 25.94%. Analyzing Figures 7.2 and 7.3 
we can observe the advantage of SMT architectures against the superscalar architecture 
irrespective these are enhanced or not with selective instruction reuse and value prediction 
mechanisms. 
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8. Conclusions and Further Work 

This chapter presents some quantitative and qualitative conclusions regarding the important 
experimental results obtained within this thesis and emphasizes some possible further work 
directions. The main contributions of this work can be summarized as follows: 

• A systematic methodology of identifying difficult-to-predict branches: we have 
shown that unbiased branches are hard to predict if their outcomes, in the considered 
prediction contexts (branch address, local or global branch history, path), tend to 
chaotically shuffle between taken and not taken. We identified through laborious 
simulations these difficult-to-predict branches in the SPEC 2000 benchmarks, and 
partially solved them through context length extension. However, about 6% of branches 
could not be solved even with the longest evaluated correlation information (28 bits), 
their polarization degrees remaining still unacceptably low (less than 0.95). Despite some 
branches are path-correlated, a global branch history of more than 12 bits approximates 
very well the longer path information. Thus, the path is useful only in the case of short 
contexts, for longer contexts its gain being insignificant. In other words, a sufficiently 
long branch history might be viewed as a good “compression” of the most complete path 
information.  

• Dedicated predictors designed to improve the prediction accuracy of unbiased 
branches: we concluded that current state-of-the-art branch predictors correlate either 
insufficient information or wrong information in the prediction of unbiased branches. 
Even one of the most effective predictors, the idealized piecewise linear branch predictor 
developed by Jiménez, only achieved a prediction accuracy of 77.3% on the unbiased 
branches, leading us to consider alternative approaches. Therefore, we improved several 
state-of-the-art branch predictors with additional prediction information. Thus, we 
developed and evaluated some PPM-based value predictors that are using a compressed 
branch condition history whose digits were -1, 0, or 1, depending on the sign of the 
difference between the operand values implied in each considered past branch. 
Unfortunately, even these idealistic predictors, able to exploit the correlation between 
branch outcome and branch condition history, could not improve the predictability of 
unbiased branches. We have analyzed comparatively the percentages of unbiased 
branches obtained using the global history, the global history concatenated with the path, 
and the global history concatenated with a new prediction information, namely, the 
previous branch condition (PBC) represented as a 32-bit difference between the operand 
values of the previous dynamic branch. The evaluations showed that the previous branch 
condition is more efficient than the path information: it decreased the percentage of 
unbiased branches for all the evaluated context lengths. Therefore we additionally used 
local (per-address) or global PBC value, hashed together with the local/global branch 
history, integrated in some conventional branch predictors like the GAg and PAg, and in 
some state-of-the-art neural branch predictors. The piecewise linear branch predictor 
improved with the global PBC value was the most efficient, according to our evaluations. 
Nevertheless, even this powerful predictor achieved a modest 78.3% average prediction 
accuracy on the unbiased branches, whereas its global average prediction accuracy was 
95.45% overcoming the original piecewise linear branch predictor (the best state of the 
art branch predictor) with 0.53%. However, this modified piecewise linear branch 
predictor significantly outperformed the modified GAg and PAg predictors. This gain 
was probably obtained because both the improved GAg and PAg predictors used a 
hashing between the PBC value and the global/local branch history, whereas the modified 
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piecewise linear branch predictor used the branch history and PBC value without 
hashing (by concatenating them). Since the impact of unbiased branches significantly 
restricts the global accuracy, predicting them still represents a hard challenge for 
computer architects. This means that accurate prediction of unbiased branches remains an 
open problem and such branches will continue to limit the ceiling of dynamic branch 
prediction. 

• Random degree metrics developed to characterize the randomness of sequences 
produced by unbiased branches: at this moment there is not a universally accepted 
paradigm for effectively defining random strings of symbols. Not surprisingly, 
understanding randomness is closely related with strong mathematical concepts like 
computability and algorithms, information theory and complexity, actual infinites theory, 
etc. The problem is therefore open and of great interests in many fields of science. We 
showed that unbiased branches could be understandable in more depth using this 
interdisciplinary methodological frame. We developed four metrics that are defining the 
random degree of a string of symbols. These metrics are based on: HMM-based 
predictability, discrete entropy, compression rate and Kolmogorov complexity associated 
to the code sequence that generates unbiased branches. The proposed random degree 
metrics could practically help the computer architect to better understand if a certain 
branch predictor should be improved. All these four developed metrics are converging at 
the same point. They are showing how much “intrinsic randomness” a string of symbols 
and, particularly, the sequences produced by unbiased branches contain. If some difficult-
to-predict branches are not intrinsic random with our metrics, according to our 
experience, their prediction accuracy could be further improved by the researcher. 
Unfortunately, if these branches are intrinsic random, the answer is a pessimistic one, 
generating a strong limitation in Computer Architecture. Since the future applications 
complexity will increase (object oriented programs, design patterns, complex project 
management, virtual machines, etc.), we expect that also the number and therefore the 
influence of unbiased branches will further increase. 

• Selective anticipatory methods integrated into superscalar architectures: our 
statistics show that about 28% of branches are dependent on long-latency instructions. 
Moreover, 5.61% of branches are unbiased and depend on long-latency instructions, too. 
These dependences involve high-penalty mispredictions becoming serious performance 
obstacles and causing significant performance degradation in executing instructions from 
wrong paths. Therefore, the negative impact of (unbiased) branches over global 
performance should be seriously attenuated by anticipating the results of long-latency 
instructions, including critical Loads. On the other hand, hiding long execution latencies 
in a pipelined superscalar processor represents an important challenge itself. Therefore, 
we developed a superscalar architecture that selectively anticipates the values produced 
by high-latency instructions. We have focused on Multiply, Division and Loads with 
miss in L1 data cache, implementing a Dynamic Instruction Reuse scheme for the 
Mul/Div instructions and a simple Last Value Predictor for the critical Load instructions. 
Our improved architecture achieved an average IPC speedup of 3.5% on the integer 
SPEC 2000 benchmarks, of 23.6% on the floating-point benchmarks, and an 
improvement in energy-delay product of 6.2% and 34.5%, respectively. Actually, this 
lower energy consumption shows the efficiency of our anticipatory techniques in a 
superscalar architecture. We have also demonstrated that there is a dynamic correlation 
between the names of the destination registers and the values stored in these registers. 
Therefore we extended dynamic value prediction by introducing the register-centric 
prediction concept instead of instruction-centric prediction. This register-centric approach 
is advantageous because fewer predictors are needed, thus reducing complexity and costs. 
We developed several different basic value predictors, such as the last value predictor, 
the stride value predictor, context-based predictors and hybrid value predictors to capture 
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certain type of value predictabilities from the SPECint95 and the SPECint2000 
benchmarks. All these predictors were adapted to our proposed prediction model. The 
evaluations showed that the hybrid predictors have best exploited the value locality 
concept. Moreover, the hybrid predictor with counter-based adaptive prioritization 
composed of a two-level and a stride predictor outperformed the PPM-based hybrid 
predictor, at significantly lower implementation cost and complexity. Considering an 8-
issue out-of-order superscalar processor, the register centric value prediction achieves 
average speedups of 17.30% on the SPECint95 benchmarks and 13.58% on the 
SPECint2000 benchmarks. 

• Selective anticipatory methods integrated into simultaneous multithreaded 
architectures: after we have shown the utility of selectively anticipating long-latency 
instructions in superscalar architectures, it was natural to analyze the efficiency of these 
methods in multithreaded environments. Thus, we have studied the impact of dynamic 
instruction reuse and value prediction, applied selectively on Mul/Div instructions and on 
critical Loads, in a Simultaneous Multithreaded (SMT) architecture. We implemented 
private Mul/Div Reuse Buffers (RB) and Load Value Prediction Tables (LVPT) for each 
thread. Our simulations performed on the SPEC 2000 benchmarks showed higher IPC on 
all evaluated SMT configurations, when the RB and LVPT structures were used. With 
fewer threads, the shared functional units are underused and therefore the selective 
instruction reuse and value prediction techniques have an important improvement 
potential. However, as the number of threads grows the IPC speedup decreases, because 
the shared functional units are better exploited due to the higher thread-level parallelism 
(TLP) and therefore the RB and LVPT structures become less important. We measured 
the highest IPC of 2.29 on the integer and 2.88 on the floating-point benchmarks with our 
six-threaded enhanced SMT architecture. However, the best improvements on the SPEC 
integer applications have been obtained with 2 threads: an IPC speedup of 5.95% and an 
EDP gain of 10.44%. Although, on the SPEC floating-point programs, we obtained the 
highest improvements with the enhanced superscalar architecture, the SMT with 3 
threads also provides an important IPC speedup of 16.51% and an EDP gain of 25.94%. 
As a conclusion, applying some well-known anticipatory techniques selectively on long-
latency instructions provides serious performance gain and significantly reduces energy 
consumption in superscalar and even in multithreaded architectures. 

Finally, we highlight some interesting research topics that need to be further investigated in 
the future. Since accurate prediction of unbiased branches still remains an open problem, we 
consider that the use of more prediction contexts (some relevant HLL code information) is 
required to further improve prediction accuracies. Perhaps an alternative mechanism might be to 
hand-shake scheduler support with dynamic branch prediction. The idea of the scheduler would 
be to remove as many branch instructions (especially unbiased branches) from the static code as 
possible and leave the remaining branches to be dynamically predicted. Yet another alternative 
could be to pursue the concepts of micro-threading where small fragments of code (e.g. both 
branch paths) are executed concurrently and the branch problem is no longer a major concern. It 
would be also useful to quantify the unbiased branch ceiling in multicore architectures. Also, 
understanding and exploring instruction reuse and value prediction benefits in a multicore 
architecture might be another very important challenge. 
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