
Potentials of Branch Predictors

— from Entropy Viewpoints —

Takashi Yokota1, Kanemitsu Ootsu1, and Takanobu Baba1

Department of Information Science, Utsunomiya University,
7–1–2 Yoto, Utsunomiya-shi, Tochigi, 321–8585 Japan

{yokota, kim, baba}@is.utsunomiya-u.ac.jp

Abstract. Predictors essentially predicts the most recent events based
on the record of past events, history. It is obvious that prediction perfor-
mance largely relies on regularity–randomness level of the history. This
paper concentrates on extracting effective information out from branch
history, and discuss expected performance of branch predictors. For this
purpose, this paper introduces entropy point-of-views to quantitative
characterization of both program behavior and prediction mechanisms.
This paper defines two new entropies independent of prediction methods
and other two entropies dependent on predictor organization. These new
entropies are useful tools for analyzing upper-bound of prediction perfor-
mance. This paper shows some evaluation results for typical predictors.

1 Introduction

Predictors are inevitable in the state-of-the-art microprocessor cores. Prediction
mechanism is essential for any speculation features in micro-architecture. How-
ever, speculation essentially incorporates prediction accuracy, i.e., more precise
prediction does better performance and vice versa.

The essential and fundamental property of today’s most predictors is that
it predicts based on past events, history. Many prediction methods have been
proposed, however, most of them discuss relative performance improvements
to some typical and well-known prediction method. Until now, no one knows
the possible performance of predictors, i.e., absolute maximum. For example,
assuming that predictor A performs 5% better than predictor B, we cannot
discuss any more for further improvements, because we cannot know possible
maximum performance.

This paper presents theoretical views on branch predictors so that we can
discuss potentials of branch predictors. Our major focus is to represent infor-
mation of past events and to clarify possible maximum performance of branch
predictors. We introduce classical information theory from Shannon. Originally,
entropy quantitatively represents essential information of the forthcoming sym-
bol, based on the existing data.

A branch predictor intends to extract essentially the same information with
Shannon’s entropy, based on the past branch results. Shannon discussed rela-
tively large set of symbols S, say the alphabet. Fortunately, a branch predictor



uses a binary symbol, i.e., a branch will be taken or untaken. This one-bit symbol
helps us to discuss potentials of prediction performance.

The remainder of this paper is organized as follows. We first give the overview
of Shannon’s information theory and describe our targeted branch predictors
in Section 2. After the preliminaries we discuss information from two aspects:
entropies independent of prediction mechanisms (in Section 3), and entropies
based on predictor organization (in Section 4). Section 5 shows evaluation results
from various perspectives. Section 6 shows related work and Section 7 concludes
this paper.

2 Preliminaries

2.1 Information Entropy

This paper stands on Shannon’s information entropy[1]. We summarize the fun-
damentals. Assume that we are discussing an entropy H(S) of a Markovian
information source S that produces a string of symbols. Instead of the entropy
of S itself, we first discuss the augmented adjoint source of S. An n-th order
augmented adjoint source of S, denoted by S

n
, generates n consecutive symbols.

The entropy of the n-th order augmented adjoint source H(S
n
) is given as the

following equation:

H(S
n
) = −

∑

i

p(Sn
i ) log2 p(Sn

i ), (1)

where p(Sn
i ) represents the probability of an individual symbol Sn

i that comprises
consecutive n original symbols.

H(S
n
) represents information in consecutive n symbols, and it monotonically

increases as n increases. Differential coefficient of (HS
n
) at n shows informa-

tion of single symbol. Thus, when (n + 1)-th order augmented adjoint entropy
H(S

n+1
) is given, the n-th approximation of the entropy H(S) of the objective

Markovian information source is given by

Hn(S) = H(S
n+1

) − H(S
n
). (2)

Therefore, the true value of the targeted entropy is given by limiting n to infinity:

H(S) = lim
n→∞ Hn(S). (3)

The entropy H(S) provides essential information of the next symbol. The
entropy also presents the predictability of the forthcoming symbol.

2.2 Branch Predictors

This paper discusses performance issues in branch predictors. Our approach in
this paper is to discuss generic and practical issues. To simplify the discussion
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Fig. 1. Generalized organization of table-formed branch predictor.

without loss of generality, we assume some typical organization and mechanisms
in branch predictors.

We specifically use table-formatted predictors as shown in Figure 1. A pre-
dictor is organized by three major functions. The predictor has one or more
prediction functions, where each prediction function is basically independent
from each other. The entry selection function selects an appropriate prediction
function according to given selection rule. Update function updates the predic-
tion function. Following the conventions in two-level predictors, we use m bits
of ‘history register’ (HR for short) as a result of selection function to point one
of the prediction functions. We also use ‘pattern history table’ (PHT) that is an
aggregation of prediction functions. Each entry of PHT consists of a prediction
function. We use bimodal (bimode)[2], two-level (2level)[3], gshare (gshare)[4],
and perceptron (perceptron)[5,6] branch predictors. All of them follow the sim-
ple organization shown in Figure 1.

bimode, 2level and gshare differ in selection function; bimode uses a simple
hash function of program counter, 2level uses the latest m results of branch
execution, and gshare uses the exclusive-or result of branch history and program
counter. However, they typically use the same prediction function: a two-bit
saturation counter that counts the number of ‘taken’ results and if the result is
untaken, the counter is decremented.

perceptron uses hash function of program counter as its selection function.
Its prediction function is distinguishing; it is based on a neural-network Per-
ceptron. Each prediction function makes use of the latest h branch results and
corresponding h weight values. Each weight value wi is a signed integer with an
arbitrary length, say 8 bits. It calculates the weighted sum: s =

∑
i wi · bi where

bi is 1 if the corresponding branch result is ‘taken’ and bi = −1 otherwise. If the
resulting sum s is positive, ‘taken’ is predicted, otherwise, ‘untaken’ is predicted.
Each PHT entry consists of a set of weight values. Update function modifies each
of weight values according to the prediction result (hit or mishit).

3 Entropies Independent of Prediction Mechanisms

Section 2.1 discusses information in a string of symbols that are generated se-
quentially. We can apply the discussion to a string of branch results by simple
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substitution of ‘branch results’ for ‘symbols.’ And, by careful observation of pro-
gram execution but prediction mechanisms, we offer the following two entropies.

3.1 Execution Unit as Information Source

First viewpoint is an execution unit in a processor core. As the processor execute
a program, branch instructions are executed according to the program. The
execution unit explicitly generates branch results so that the results are used for
prediction in the branch predictor. Figure 2 illustrates it.

We can discuss entropy for the series of branch results. We consider Marko-
vian information source B, i.e., the execution unit. By considering n consecutive
branch results, we can define n-th order augmented adjoint information source
B

n
. By simple application of Section 2.1, we can define the entropy of the n-th

order augmented adjoint source H(B
n
), and the n-th approximation of the tar-

geted entropy H(B), Hn(B). The essential entropy H(B) is given by limiting n
to infinity as Equation (3). We call the new entropy Branch History Entropy
(BHe).

3.2 Branch Instructions as Information Sources

Another viewpoint is individual branch instruction. Each branch instruction
has its own branch history. Thus, we can define an entropy for each branch
instruction. We consider that each branch instruction is a Markovian information
source Ii. By applying the original entropy definition given in Section 2.1, we can
define the entropy of i-th branch instruction, H(Ii). Overall entropy is given as
the average of H(Ii), i.e., H(I) = 1

Nb

∑
i ni·H(Ii) where ni is the execution count

of the i-th branch instruction and Nb is the total number of branch executions.
We call the entropy Branch Instruction Entropy (BIe).

3.3 Fundamental Properties of Proposed Entropies

These entropies have a common important feature: these are independent of any
prediction mechanisms. They represent essential information that is extracted
through program execution, i.e., they represent program behavior.

BHe represents information only from branch history. This means that BHe
shows the certainty degree of the forthcoming branch result, with no any ad-
ditional hints. The branch history itself contains no information on individual
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branch instructions but sequence of branch results. In practical situations, a
string of branch history often shows a particular execution path.

On the other hand, BIe is basically defined for each branch instruction. It
essentially does not represent ‘execution path’ information, but it represents the
local regularity of program behavior.

We claim that BHe represents information of global history, and BIe shows
local (or per address) history information. We will discuss further with a practical
example.

As an example situation, assume that a loop has two frequently-executed
paths A and B that show branch history ‘1011’ and ‘0111,’ respectively. These
paths are regularly executed as simple repetition of A→A→B. Figure 3 shows
BHe and BIe in such situation. Solid vertical arrows show loop iterations and
circles designate branch instructions and their branch decisions. Each horizontal
dotted line shows per-address branch history at the corresponding instruction.

Executed paths are recorded in the BHe trace, and each BIe trace shows local
history at branch instruction. In this example, high regularity in path execution
reflects the regularity of the local history. This observation tell us that BHe and
BIe are not strictly orthogonal but correlated at a considerable level.

4 Entropies in Prediction Functions

4.1 Information to Each Prediction Function

We will enter specific discussion on fundamental organization of predictors. A
string of branch results, originated by the processor core, inherently contains the
first-order information. We can consider that the information flows along the pre-
dictor organization. Figure 4 illustrates the flow. The information is poured into
the ‘entry selection function’ and reaches individual entry of PHT, prediction
function. But the original information is divided and only a segment of informa-
tion is delivered into each prediction function.

This observation drives us to different entropy definition. Each prediction
function has its own information of branch results, on which we can define en-
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tropy. Similarly to the Branch Instruction Entropy discussion, we can define
entropy of each prediction function. Input sequence to a prediction function Ei

has entropy H(Ei). The overall entropy is given by H(E) = 1
Ne

∑
i ei · H(Ei)

where ei is the reference count of the i-th prediction function Ei and Ne de-
notes the total number of references to PHT. We call the entropy Table Entry
Entropy (TEe).

4.2 Information in Imbalanced References

The first-order information bifurcates at the entry selection function, and some
portion of the original information is lost. To compensate this, we define Table
Reference Entropy (TRe). TRe represents effective number of active entries.
Following to the discussion in the previous section, ei is the number of references
to i-th prediction function, and Ne is the total number of PHT references. ri =
ei/Ne shows the probability of reference on the i-th entry, prediction function.
Table Reference Entropy is given by H(R) = −∑

i ri log2 ri.

4.3 Discussion

TEe and TRe have different standpoints, but their origin is common, the first-
order branch information. TEe shows the practical information poured into each
prediction function, i.e., ‘per-predictor’ information. This is very likely to BIe as
a (quasi-)orthogonal measure to BHe. Low TEe means that each predictor input
has low information and, thus, the predictor is ease to predict.

Figure 5 shows the same example with Figure 3, but the figure shows se-
quences of branch history at each prediction function. The first-order informa-
tion is delivered to individual PHT entry, which is prediction function, similarly
to individual branch instruction. Most paths contain several or more lengths of
branch history, thus, the first-order information is delivered to more destina-
tions than those in the BIe condition. However, we can expect lower information
entropy, thus higher prediction accuracy, from this entropy.

We can further discuss TEe and TRe entropies under the specific branch
prediction mechanisms given in Section 2.2. bimode and perceptron predictors
use a hash function of program counter. If these predictors have sufficient PHT
entries, most of active entries correspond to their own branch instructions and,
thus, TEe is very close to BIe. If only a limited number of instructions dominate,
TRe becomes low.
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In 2level predictors, history register (HR) shows the latest m branch results.
Since TRe is based on the values of HR, the entropy is just the same as m-th
order augmented adjoint source entropy, i.e., H(S

m
) given by Equation (1).

gshare predictor uses an XOR’ed value of branch history and program
counter. This scatters the use of PHT entries. Thus, TRe shows wide variations
of local history at branch instructions.

5 Evaluation

5.1 Evaluation Environment

We extended the sim-bpred simulator in the SimpleScalar toolset[7] so that our
defined entropies are measured. We also implemented the perceptron predictor in
sim-bpred. PISA instruction set was used. Some programs in SPEC CPU2000[8]
benchmark are compiled by gcc 2.7.2.3 PISA cross compiler. The benchmark set
has variety of problem size: we used ‘train.’

Entropies and prediction hit ratio are measured in every 1,000,000 (1M)
branches time-window. Size of the time-window is important for accuracy of
measured entropy. Although more samples produces more precise results, long
time-window may bury important characteristics of ‘phases’ in program execu-
tion. We consider the 1 million branch time-window is proper[5, 6].

Predictors use the same size of PHT entry, 212 = 4096 entries, thus HR is
12-bit width. Since theoretical entropy definition (Equation (3)) is not practical,
we measured 14-, 15-, 16-, 17-, and 18-th order augmented adjoint entropies
and the essential entropy is calculated by the least-square method of these five
entropies.

5.2 Potentials of Branch Predictors

We firstly show time-sequence plot of predictor hit ratio and some of proposed
entropies in Figure 6. We can find that they are considerably correlated to each
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other. We will discuss potentials of branch predictors by analyzing correlations
in detail.

As discussed in Section 3.3, BHe and BIe have different standpoints, but they
are not always orthogonal. Figure 7 shows the correlation between BHe and BIe.
Each dot shows BHe and BIe at the corresponding time-window. Dots widely
scatter, but clear correlation is observed.

Important fact is that most dots are below the y = x line. This means that
BHe is larger than BIe at most measured points. Since BHe and BIe correspond
global and local history, respectively, this result says that local history shows
higher level of regularity and, thus, higher prediction performance than those of
global history.

Essential entropy definition for binary-event system is given as f(p) = −p log2 p−
(1 − p) log2(1 − p), where p denotes the probability of the event. When an en-
tropy value ε is given, we can estimate the originated probability p by the inverse
function of f(p), f−1(ε). We call the estimated probability expected hit ratio
in this paper.
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Fig. 8. Expected hit ratio from BIe and predictor hit ratio.

Figure 8 shows correlation of the expected hit ratio by BIe and actual pre-
diction hit ratio. Similarly to Figure 7, each dot represents expected hit ratio by
BIe and predictor’s performance (hit ratio) at the corresponding time-window.
Each graph in the figure shows y = x line. The line represents performance
criterion: dots located above the line show that the predictor performs beyond
expectation. In Figure 8 cases, no predictor exceeds the criteria and the y = x
line shows potential performance.

Expected hit ratio can also be derived by other entropy metrics; BHe and
TEe. These entropies also show similar plots to that of BIe. Figure 9 shows TEe
plots of perceptron and gshare predictors. Note that expected hit ratio by BIe
shows a generic criteria independent of predictor organization, and that expected
ratio by TEe shows a specific potential.

Actual and expected hit ratios in each application are summarized in Table
1. Each fraction shows an average value throughout the execution of the corre-
sponding application. In most application except 255.vortex, TEe is the best
in expected hit ratio. Practically, TEe values show potentials of predictors. Note
that BIe values are very close to those of TEe; their difference is less than 1
percent in most applications. However, populations of those entropies are very
different: population of BIe is the number of executed branch instructions in
the time-window, and TEe population scatters according to the changes in his-
tory register. As a typical example of 164.gzip, populations of BIe and TEe are
about 100 and 1,000, respectively. This means that, in actual programs, branch
instructions act very regularly as well as prediction functions.
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Table 1. Summary of prediction hit ratios and expected hit ratios from proposed
entropies.

actual hit ratios expected hit ratios
benchmark bimode 2level gshare perceptron BHe BIe TEe(gshare)

(CINT2000)
164.gzip .9241 .9370 .9363 .9467 .9702 .9853 .9890
175.vpr(pl) .8963 .8720 .8812 .9333 .9532 .9777 .9808
175.vpr(rt) .8707 .9013 .8965 .9110 .9402 .9720 .9837
176.gcc .9134 .9098 .9140 .9760 .9758 .9890 .9892
181.mcf .8959 .9382 .9261 .9468 .9723 .9806 .9892
197.parser .8939 .9203 .9252 .9509 .9601 .9837 .9912
254.gap .9359 .9475 .9519 .9799 .9832 .9927 .9942
255.vortex .9769 .9318 .9642 .9976 .9881 .9989 .9967
256.bzip2 .9824 .9820 .9841 .9877 .9913 .9937 .9956
300.twolf .8123 .7979 .8042 .8902 .9108 .9636 .9839
(CFP2000)
168.wupwise .8556 .9275 .9540 .9859 .9874 .9962 .9994
171.swim .9913 .9926 .9941 .9972 .9963 .9976 .9979
172.mgrid .9745 .9755 .9754 .9807 .9791 .9811 .9860
173.applu .7569 .9719 .9736 .9985 .9899 .9986 .9993
177.mesa .9829 .9861 .9876 .9930 .9965 .9985 .9987
179.art .9071 .9911 .9910 .9916 .9959 .9980 .9986
183.equake .8839 .9660 .9763 .9801 .9881 .9937 .9981
188.ammp .9659 .9787 .9800 .9854 .9820 .9905 .9931
301.apsi .9727 .9707 .9833 .9925 .9845 .9919 .9925

6 Related Work

Major contribution of this paper can be described in two perspectives; first one
is quantitative representation of program behavior from a sequence of branch
results, and the other one is estimation of potential prediction performance.

Many researches have concentrated to imbalanced feature in program execu-
tion. Tyson et al.[9] show some imbalanced feature in taken/untaken sequences



of branch results. They show four typical cases; long consecutive takens, long
consecutive untakens, a small number of untakens in long consecutive takens,
and other patterns. Kise et al.[10] discuss a new predictor based on extremely
biased branches. Such classifications help prediction, but no quantitative discus-
sions are made on imbalanced features.

Periodicity is possibly a quantitative measure of program behavior. Freitag
et al.[11] proposed Dynamic Periodicity Detector (DPD) by examination of se-
quences of data values that appear during program execution. Fourier Analysis
Branch (FAB) predictor, proposed by Kampe et al.[12], uses the Fourier coef-
ficients for representing periodicity for branch prediction purpose. Periodicity
offers quantitative representation, however, it does not show essential informa-
tion.

Mudge and Chen et al.[13, 14] present limits in the prediction performance
based on prediction using the Partial Matching (PPM) method. They use m-th
order Markov predictor and underlying idea is very similar to ours. Driesen et
al.[15, 16] discuss limits of indirect branch prediction from a different point of
view from that used in this paper. Jha et al.[17] also use a Markovian model to
represent an optimal prediction mechanism for a given history length. Vintan et
al.[18] discuss prediction limits based on unbiased branches. Idealistic predictors
discuss substantial limits on prediction performance in Championship Branch
Prediction competition (CBP [19, 20]). These researches are not successful for
quantitative representation of regularity/randomness features in program exe-
cution, as our defined entropies do. Our preliminary results are found in [21,
22]. Our approach to the limits on prediction is unique in its theoretical and
quantitative approach based on information entropy.

7 Concluding Remarks

Prediction performance essentially relies on the nature of past events. Thus,
modern predictors enter detailed discussion to effectively extract useful informa-
tion on prediction and improves performance. But theoretical limit on prediction
performance was unclear.

This paper introduces information entropy concept to clarify theoretical lim-
its in branch prediction. Our approach has two aspects: one is independent of
prediction methods and the other one is dependent on predictor organization.
We proposed two entropies, BHe and BIe, to represent global and local features
in branch history. Furthermore, we defined TEe and TRe entropies for typi-
cal table-formatted predictors. BHe, BIe and TEe entropies can derive expected
prediction performance, i.e., limits on prediction. BHe and BIe show prediction
limits by global and local history, respectively. TEe shows theoretical limits on
the predictor organization.

Potentials in branch prediction is calculated on a time-window basis. This
offers a detailed criterion for program execution phases as well as applications
themselves. And the evaluation results reveal the potentials are high and we
have still large rooms to improve prediction performance.
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